Edit and compile if you like:
\documentclass[border=2pt]{standalone} % Drawing \usepackage{tikz} % Define Color \definecolor{g1}{rgb}{0.0, 1.0, 0.0} % Tikz Library \usetikzlibrary{angles, patterns, quotes, calc, decorations.markings, decorations.pathmorphing} % Tikz Style \tikzset{every node/.style={align=center}} \tikzset{arrow inside/.style = {postaction=decorate,decoration={markings,mark=at position .52 with \arrow{stealth}}}} \tikzset{ray/.style={very thick, red, arrow inside}} \tikzset{line/.style={thick, black}} \tikzset{lined/.style={thick, black, dashed}} % New Command %% To Draw the Reflector and the Perpendicular Line to It \newcommand{\cdraw}[3]{\draw[#3] (-{#1*cos(#2)}+4, -{#1*sin(#2)+4}) -- ({#1*cos(#2)+4}, {#1*sin(#2)+4})} %% To Draw the Viewing Screen \newcommand{\cdraww}[3]{\draw[#3] (-{#1*cos(#2)}+7.5, -{#1*sin(#2)+1}) -- ({#1*cos(#2)+7.5}, {#1*sin(#2)+1})} %% To Fill with North West Lines in Polar Coordinates \newcommand{\cfill}[2]{\fill[pattern = north west lines] (-{#1*cos(#2)}+4, -{#1*sin(#2)+4}) -- ({#1*cos(#2)+4}, {#1*sin(#2)+4}) -- ({#1*cos(#2)+3.8}, {#1*sin(#2)+3.8}) -- (-{#1*cos(#2)+3.8}, -{#1*sin(#2)+3.8}) -- (-{#1*cos(#2)+4}, -{#1*sin(#2)+4}) -- cycle} \begin{document} \begin{tikzpicture} % % Grid % \draw[dotted, black!30] (0,0) grid (10,10); % \foreach \i in {0,...,10} % { % \node at (-2ex,\i) {\i}; % \node at (\i,-2ex) {\i}; % } % Coordinates \coordinate (O) at (4,4); \coordinate (P) at (4,8); \coordinate (P') at (4,1); \coordinate (A) at (7.5,1); \coordinate (D) at (1.5,1.5); \coordinate (G) at ({4+3*cos(120)},{4+3*sin(120)}); \coordinate (G') at ({4-3*cos(120)},{4-3*sin(120)}); \coordinate (K) at ({4+3*cos(30)},{4+3*sin(30)}); \coordinate (K') at ({4-3*cos(30)},{4-3*sin(30)}); %% Coordinate Visulization % \point{A}{$A$}{right} % \point{O}{$O$}{left} % \point{P}{$P$}{right} % \point{P'}{$P'$}{right} % \point{D}{$D$}{right} % \point{G}{$G$}{right} % \point{G'}{$G'$}{right} % \point{K}{$K$}{right} % \point{K'}{$K'$}{right} % Rays \draw[ray] (P) -- (O); \draw[ray] (O) -- (A); \draw[ray] (O) -- (D); %% Dashed \draw[lined] (O) -- (P'); % Reflector \cdraw{2.8}{120}{line}; \cfill{2.8}{120}; %% Dashed \cdraw{2.6}{30}{lined}; % Angles \pic[draw, thick, angle radius=14pt, angle eccentricity=1.5pt, "$a$"] {angle=K--O--P}; \pic[draw, thick, angle radius=18pt, angle eccentricity=1.4pt, "$b$"] {angle=A--O--K}; \pic[draw, thick, angle radius=40pt, angle eccentricity=1.5pt] {angle=P'--O--A}; \node at (5,2.7) {$\varepsilon$}; % Polarizer \draw[thick, fill=black!25] (3,7.2) rectangle (5,7); %% Node \node[rotate=270] at (5.4, 7.1) {\small Polarizer}; % Viewing Screen \cdraww{1}{50}{line, black, double distance = 2pt, double = black!30}; %% Node \node[rotate=52] at (7.8,0.7) {\small Viewing\\\small Screen}; % Layser \draw[thick, fill=black!10] (3.8,9.2) rectangle (4.2,8); %% Node \node[rotate=270] at (4,8.6) {\small Laser}; \end{tikzpicture} \end{document}
Click to download: finding-brewster-angle.tex
Open in Overleaf: finding-brewster-angle.tex
This file is available on GitHub.
See more on the author page of Alexandros Tsagkaropolulos.