Simple 2d example illustrating the role of the Jacobian determinant in the change of variables formula. Inspired by Ari Seff in https://youtu.be/i7LjDvsLWCg?t=250.
Edit and compile if you like:
% Simple 2d example illustrating the role of the Jacobian determinant in the change of variables formula. Inspired by Ari Seff in https://youtu.be/i7LjDvsLWCg?t=250. \documentclass[tikz]{standalone} \usepackage{pgfplots,mathtools} \pgfplotsset{compat=newest} \begin{document} \begin{tikzpicture}[thick] \draw[->] (-3,0) -- (3,0) node[below] {$z_1$}; \draw[->] (0,-3) -- (0,3) node[right] {$z_2$}; \draw[fill=blue!30] (0,0) rectangle (1,1) node (z1) {}; \node[below right,font=\large] at (-3,3) {$Z$}; \begin{scope}[xshift=4cm] \draw[->] (-0.3,2.7) -- node[midway,below] {$f$} (0.3,2.7); \draw[<-] (-0.3,-2.7) -- node[midway,below] {$f^{-1}$} (0.3,-2.7); \end{scope} \begin{scope}[xshift=8cm] \draw[->] (-3,0) -- (3,0) node[below] {$x_1$}; \draw[->] (0,-3) -- (0,3) node[right] {$x_1$}; \draw[fill=red!30] (0,0) rectangle (2,2) node (x1) {}; \draw[fill=green!30] (0,0) rectangle (2,-2) node (x2) {}; \node[below left,font=\large] at (3,3) {$X$}; \end{scope} \draw[->,dotted,red!50!black] (z1) -- node[midway,below,sloped,font=\small] {$\det J_f^{-1} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix}^{-1} \mkern-15mu = \frac 1 4$} (x1); \draw[->,dotted,green!50!black] (z1) -- node[midway,below,sloped,font=\small] {$\det J_f^{-1} = \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix}^{-1} \mkern-15mu = -\frac 1 4$} (x2); \end{tikzpicture} \end{document}
Click to download: change-of-variables.tex
Open in Overleaf: change-of-variables.tex
This file is available on tikz.netlify.app and on GitHub and is MIT licensed.
See more on the author page of Janosh Riebesell..