Edit and compile if you like:
\documentclass{article} \usepackage{tikz} \usepackage{tikz-3dplot} \usetikzlibrary{math} \usepackage{ifthen} \usepackage[active,tightpage]{preview} \PreviewEnvironment{tikzpicture} \setlength\PreviewBorder{1pt} % % File name: differential-of-volume-rectangular-coordinates.tex % Description: % A geometric representation of the differential of % volume in rectangular coordinates is shown. % % Date of creation: September, 25th, 2021. % Date of last modification: October, 9th, 2022. % Author: Efraín Soto Apolinar. % https://www.aprendematematicas.org.mx/author/efrain-soto-apolinar/instructing-courses/ % Source: page 121 of the % Glosario Ilustrado de Matem\'aticas Escolares. % https://tinyurl.com/5udm2ufy % % Terms of use: % According to TikZ.net % https://creativecommons.org/licenses/by-nc-sa/4.0/ % Your commitment to the terms of use is greatly appreciated. % \begin{document} % \begin{center} \tdplotsetmaincoords{70}{120} % \begin{tikzpicture}[tdplot_main_coords,scale=1.5] \tikzmath{function funcion(\x,\y) {return 2.5+0.25*sin((0.5*\x + \y) r);};} \pgfmathsetmacro{\step}{pi/50.0} \pgfmathsetmacro{\xi}{0} \pgfmathsetmacro{\xf}{1.0*pi} \pgfmathsetmacro{\xe}{\xf+\step} \pgfmathsetmacro{\xs}{\xi+\step} \pgfmathsetmacro{\yi}{0} \pgfmathsetmacro{\yf}{1.0*pi} \pgfmathsetmacro{\ys}{\yi+\step} \pgfmathsetmacro{\ye}{\yf+\step} \pgfmathsetmacro{\h}{2.5} % Límites de mi región en el plano xy \pgfmathsetmacro{\a}{0.75} \pgfmathsetmacro{\b}{\a+1.5} \pgfmathsetmacro{\c}{1.0} \pgfmathsetmacro{\d}{\c+1.5} % Punto donde dibujo el diferencial de área \pgfmathsetmacro{\px}{(0.45*\a+0.55*\b)} \pgfmathsetmacro{\py}{0.5*(\c+\d)} \pgfmathsetmacro{\dx}{0.1} \pgfmathsetmacro{\dy}{0.1} % Punto A (\a,\c,0) \pgfmathsetmacro{\zA}{funcion(\a,\c)} \pgfmathsetmacro{\zB}{funcion(\b,\c)} \pgfmathsetmacro{\zC}{funcion(\b,\d)} \pgfmathsetmacro{\zD}{funcion(\a,\d)} \pgfmathsetmacro{\zdA}{funcion(\px,\py)} \pgfmathsetmacro{\zdB}{funcion(\px+\dx,\py)} \pgfmathsetmacro{\zdC}{funcion(\px+\dx,\py+\dy)} \pgfmathsetmacro{\zdD}{funcion(\px,\py+\dy)} % Coordinate axis \draw[thick,->] (0,0,0) -- (\xf+0.25,0,0) node [below] {$x$}; % Eje x \draw[thick,->] (0,0,0) -- (0,\yf+0.25,0) node [right] {$y$}; % Eje y \draw[thick,->] (0,0,0) -- (0,0,\h+0.5,0) node [above] {$z = f(x,y)$}; % The region in the xy-plane \draw[white] (\a,\d,0) -- (\b,\d,0) node [black,below,sloped,midway] {$R$}; \draw[dash dot dot] (\a,0,0) node[above left] {$a$} -- (\a,\c,0); \draw[dash dot dot] (\b,0,0) node[above left] {$b$} -- (\b,\c,0); \draw[dash dot dot] (0,\c,0) node[above right] {$c$}-- (\a,\c,0); \draw[dash dot dot] (0,\d,0) node[above right] {$d$}-- (\a,\d,0); \fill[gray!25] (\a,\c,0) -- (\b,\c,0) -- (\b,\d,0) -- (\a,\d,0) -- (\a,\c,0); \draw[dash dot dot] (\a,\c,0) -- (\b,\c,0) -- (\b,\d,0) -- (\a,\d,0) -- (\a,\c,0); % The solid (boundary) \draw[dash dot dot] (\a,\c,0) -- (\a,\c,\zA); \draw[dash dot dot] (\b,\c,0) -- (\b,\c,\zB); \draw[dash dot dot] (\a,\d,0) -- (\a,\d,\zD); \draw[dash dot dot] (\b,\d,0) -- (\b,\d,\zC); % Differential of area $dA$ \draw[fill=cyan] (\px,\py,0) -- (\px,\py+\dy,0) -- (\px+\dx,\py+\dy,0) -- (\px+\dx,\py) -- (\px,\py,0); % Delimiting the differential of volume \draw[thin] (\px,\py,0) -- (\px,\py,\zdA); % Face parallel to the yz plane \fill[cyan,opacity=0.75,draw=white] (\px+\dx,\py,0) -- (\px+\dx,\py,\zdB) -- (\px+\dx,\py+\dy,\zdC) -- (\px+\dx,\py+\dy,0) -- (\px+\dx,\py,0); % Face parallel to the xz plane \fill[cyan,opacity=0.75,draw=white] (\px,\py+\dy,0) -- (\px,\py+\dy,\zdD) -- (\px+\dx,\py+\dy,\zdC) -- (\px+\dx,\py+\dy,0) -- (\px+\dx,\py+\dy,0); \draw[thin] (\px+\dx,\py,0) -- (\px+\dx,\py,\zdB) node[left,midway] {$dV$}; \draw[thin] (\px,\py+\dy,0) -- (\px,\py+\dy,\zdD); \draw[thin] (\px+\dx,\py+\dy,0) -- (\px+\dx,\py+\dy,\zdC); \draw[thin] (\px+\dx,\py,0) -- (\px+\dx,\py+\dy,0); \draw[thin] (\px,\py+\dy,0) -- (\px+\dx,\py+\dy,0); \draw[fill=cyan,opacity=0.75,draw=black] (\px,\py,\zdA) -- (\px+\dx,\py,\zdB) -- (\px+\dx,\py+\dy,\zdC) -- (\px,\py+\dy,\zdD) -- (\px,\py,\zdA); % Coordinate axis \draw[thick] (\xi-0.25,0,0) -- (0,0,0); % Eje x \draw[thick] (0,\yi-0.25,0,0) -- (0,0,0); % Eje y % Graph of $z = f(x,y)$ (first quadrant) \foreach \x in {0,\step,...,\xf}{ \draw[cyan,opacity=0.5] plot[domain=0:\yf,smooth,variable=\t] ({\x},{\t},{funcion(\x,\t)}); } \foreach \y in {0,\step,...,\yf}{ \draw[cyan,opacity=0.5] plot[domain=0:\yf,smooth,variable=\t] ({\t},{\y},{funcion(\t,\y)}); } % Curves upon the graph of $z = f(x,y)$ that delimit the region of integration \foreach \x in {\a,\b} \draw[blue,thick,opacity=0.85] plot[domain=\c:\d,smooth,variable=\t] ({\x},{\t},{funcion(\x,\t)}); \foreach \y in {\c,\d} \draw[blue,thick,opacity=0.85] plot[domain=\a:\b,smooth,variable=\t] ({\t},{\y},{funcion(\t,\y)}); \end{tikzpicture} \end{center} % \end{document}
Click to download: differential-of-volume-rectangular-coordinates.tex • differential-of-volume-rectangular-coordinates.pdf
Open in Overleaf: differential-of-volume-rectangular-coordinates.tex
See more on the author page of Efraín Soto Apolinar.