Electric field strength of a charged rod, plane, solid sphere, hollow sphere or conducting sphere, as a function of radius r or distance x.
Edit and compile if you like:
% Author: Izaak Neutelings (Februari, 2020) % page 8 https://archive.org/details/StaticAndDynamicElectricity % https://tex.stackexchange.com/questions/56353/extract-x-y-coordinate-of-an-arbitrary-point-on-curve-in-tikz % https://tex.stackexchange.com/questions/412899/tikz-calculate-and-store-the-euclidian-distance-between-two-coordinates \documentclass[border=3pt,tikz]{standalone} \usepackage{amsmath} % for \dfrac \usepackage{physics} \usepackage{tikz,pgfplots} \usetikzlibrary{angles,quotes} % for pic (angle labels) \usetikzlibrary{decorations.markings} \tikzset{>=latex} % for LaTeX arrow head \usepackage{xcolor} \colorlet{Ecol}{orange!90!black} \colorlet{veccol}{green!45!black} \tikzstyle{EField}=[thick,Ecol] \def\xmax{5.0} \def\ymax{3.3} \def\tick#1#2{\draw[thick] (#1) ++ (#2:0.03*\ymax) --++ (#2-180:0.06*\ymax)} \begin{document} % ELECTRIC FIELD of a ROD \begin{tikzpicture} \def\kQ{2.0} \coordinate (O) at (0,0); \coordinate (X) at (\xmax,0); \coordinate (Y) at (0,\ymax); % AXIS \draw[<->,thick] (X) node[below] {$y$} -- (O) -- (Y) node[left] {$E$}; % PLOT \draw[EField,samples=100,smooth,variable=\x,domain={1.1*\kQ/\ymax}:0.96*\xmax] plot(\x,\kQ/\x); \node[above right] at (1.3,1.6) {$E \sim \dfrac{1}{y}$}; \end{tikzpicture} % ELECTRIC FIELD of a ROD \begin{tikzpicture} \def\kQ{2.0} \coordinate (O) at (0,0); \coordinate (X) at (\xmax,0); \coordinate (Y) at (0,\ymax); % AXIS \draw[<->,thick] (X) node[below] {$r$} -- (O) -- (Y) node[left] {$E$}; % PLOT \draw[EField,samples=100,smooth,variable=\x,domain={1.1*\kQ/\ymax}:0.96*\xmax] plot(\x,\kQ/\x); \draw[black!70,thin,dashed,black,samples=100,smooth,variable=\x,domain={sqrt(1.1*\kQ/\ymax)}:0.96*\xmax] plot(\x,\kQ/\x^2); \node[black!70,left,scale=0.9] at (1.5,0.6) {$E \sim \dfrac{1}{r^2}$}; %(0.9,2.9) \node[Ecol!90!black,above right] at (1.9,1.1) {$E \sim \dfrac{1}{r}$}; \end{tikzpicture} % ELECTRIC FIELD of a PLANE \begin{tikzpicture} \def\kQ{2.3} \coordinate (O) at (0,0); \coordinate (X) at (\xmax,0); \coordinate (Y) at (0,\ymax); % AXIS \draw[<->,thick] (X) node[below] {$x$} -- (O) -- (Y) node[left] {$E$}; \tick{0,\kQ}{ 0} node[below=-1,left] {$\dfrac{\sigma}{2\epsilon_0}$}; % PLOT \draw[EField,samples=100,smooth,variable=\x,domain=0:0.96*\xmax] plot(\x,\kQ); \draw[black!60,thin,dashed,black,samples=100,smooth,variable=\x,domain={sqrt(1.1*\kQ/\ymax)}:0.96*\xmax] plot(\x,\kQ/\x^2); \node[black!60,left,scale=0.9] at (3.2,1.2) {$E \sim \dfrac{1}{x^2}$}; \end{tikzpicture} % ELECTRIC FIELD of a CHARGED, SOLID SPHERE % or ELECTRIC FIELD of a CONDUCTING SPHERE with excess charge \begin{tikzpicture} \def\kQ{10} \def\R{2.0} \coordinate (O) at (0,0); \coordinate (X) at (\xmax,0); \coordinate (Y) at (0,\ymax); \coordinate (P) at (\R,\kQ/\R^2); \coordinate (Px) at (\R,0); \coordinate (Py) at (0,\kQ/\R^2); % AXIS \draw[<->,thick] (X) node[below] {$r$} -- (O) -- (Y) node[left] {$E$}; \tick{Py}{ 0} node[below=-1,left] {$\dfrac{kQ}{R^2}$}; \tick{Px}{90} node[below] {$R$}; % PLOT \draw[EField,samples=100,smooth,variable=\x,domain=0:\R] plot(\x,\kQ*\x/\R^3); \draw[EField,samples=100,smooth,variable=\x,domain=\R:0.96*\xmax] plot(\x,\kQ/\x^2); \node[scale=0.9] at (0.75,2.0) {$E \sim \dfrac{r}{R^3}$}; \node[above right] at (2.7,1.3) {$E \sim \dfrac{1}{r^2}$}; \draw[dashed] (Py) -- (P) -- (Px); \end{tikzpicture} % ELECTRIC FIELD of a CHARGED SPHERE \begin{tikzpicture} \def\kQ{10} \def\R{2.0} \coordinate (O) at (0,0); \coordinate (X) at (\xmax,0); \coordinate (Y) at (0,\ymax); \coordinate (P) at (\R,\kQ/\R^2); \coordinate (Px) at (\R,0); \coordinate (Py) at (0,\kQ/\R^2); % AXIS \draw[<->,thick] (X) node[below] {$r$} -- (O) -- (Y) node[left] {$E$}; \tick{Py}{ 0} node[below=-1,left] {$\dfrac{kQ}{R^2}$}; \tick{Px}{90} node[below] {$R$}; % PLOT \draw[EField,samples=100,smooth,variable=\x,domain=\R:0.96*\xmax] plot(\x,\kQ/\x^2); \draw[EField] (0,0.004*\ymax) --++ (Px); \node[above right] at (2.7,1.3) {$E \sim \dfrac{1}{r^2}$}; \draw[dashed] (Py) -- (P) -- (Px); \end{tikzpicture} % ELECTRIC FIELD of a CONDUCTING SLAB \begin{tikzpicture} \def\xmax{5.9} \def\ymax{2.7} \def\E{0.74*\ymax} \def\W{0.28*\xmax} \coordinate (O) at (0,0); \coordinate (XL) at (-\xmax/2,0); \coordinate (XR) at (\xmax/2,0); \coordinate (Y) at (0,\ymax); % AXIS \draw[->,thick] (XL) -- (XR) node[below] {$x$}; \draw[->,thick] (O) -- (Y) node[left] {$E$}; \tick{-\W/2,0}{90} node[below] {$-W/2$}; \tick{\W/2,0}{90} node[below] {$W/2$}; \tick{0,\E}{0} node[above=2,above left=-3] {$E_\text{ext}$}; % PLOT \draw[EField] (-0.45*\xmax,\E) -- (-\W/2,\E); \draw[EField] (\W/2,\E) -- (0.45*\xmax,\E); \draw[dashed] (-\W/2,0) -- (-\W/2,\E); \draw[dashed] ( \W/2,0) -- ( \W/2,\E); \draw[EField] (-\W/2,0.005) -- (\W/2,0.01); \end{tikzpicture} % ELECTRIC FIELD of a CONDUCTING SPHERE with a cavity \begin{tikzpicture} \def\kQ{4} \def\Rin{2.1} \def\Rout{3.1} \coordinate (O) at (0,0); \coordinate (X) at (\xmax,0); \coordinate (Y) at (0,\ymax); % AXIS \draw[<->,thick] (X) node[below] {$r$} -- (O) -- (Y) node[left] {$E$}; \tick{\Rin,0}{90} node[below] {$R_\text{in}$}; \tick{\Rout,0}{90} node[below] {$R_\text{out}$}; % PLOT \draw[EField,samples=100,smooth,variable=\x,domain={sqrt(1.0*\kQ/\ymax)}:\Rin] plot (\x,\kQ/\x^2); \draw[dashed] (\Rin,\kQ/\Rin^2) -- (\Rin,0.01); \draw[EField] (\Rin,0.01) -- (\Rout,0.01); \draw[dashed] (\Rout,0.01) -- (\Rout,\kQ/\Rout^2); \draw[EField,samples=100,smooth,variable=\x,domain=\Rout:0.96*\xmax] plot (\x,\kQ/\x^2); \node[above right] at (1.8,2.1) {$E \sim \dfrac{1}{r^2}$}; \end{tikzpicture} \end{document}
Click to download: electric_field_plots.tex • electric_field_plots.pdf
Open in Overleaf: electric_field_plots.tex