Finding Brewster Angle

finding-brewster-angle

Edit and compile if you like:

\documentclass[border=2pt]{standalone}
% Drawing
\usepackage{tikz}
% Define Color
\definecolor{g1}{rgb}{0.0, 1.0, 0.0}
% Tikz Library
\usetikzlibrary{angles, patterns, quotes, calc, decorations.markings, decorations.pathmorphing}
% Tikz Style
\tikzset{every node/.style={align=center}}
\tikzset{arrow inside/.style = {postaction=decorate,decoration={markings,mark=at position .52 with \arrow{stealth}}}}
\tikzset{ray/.style={very thick, red, arrow inside}}
\tikzset{line/.style={thick, black}}
\tikzset{lined/.style={thick, black, dashed}}
% New Command
%% To Draw the Reflector and the Perpendicular Line to It
\newcommand{\cdraw}[3]{\draw[#3] (-{#1*cos(#2)}+4, -{#1*sin(#2)+4}) -- ({#1*cos(#2)+4}, {#1*sin(#2)+4})}
%% To Draw the Viewing Screen
\newcommand{\cdraww}[3]{\draw[#3] (-{#1*cos(#2)}+7.5, -{#1*sin(#2)+1}) -- ({#1*cos(#2)+7.5}, {#1*sin(#2)+1})}
%% To Fill with North West Lines in Polar Coordinates
\newcommand{\cfill}[2]{\fill[pattern = north west lines]
(-{#1*cos(#2)}+4, -{#1*sin(#2)+4}) --
({#1*cos(#2)+4}, {#1*sin(#2)+4}) --
({#1*cos(#2)+3.8}, {#1*sin(#2)+3.8}) --
(-{#1*cos(#2)+3.8}, -{#1*sin(#2)+3.8}) --
(-{#1*cos(#2)+4}, -{#1*sin(#2)+4}) -- cycle}
\begin{document}
\begin{tikzpicture}
% % Grid
% \draw[dotted, black!30] (0,0) grid (10,10);
% \foreach \i in {0,...,10}
% {
% \node at (-2ex,\i) {\i};
% \node at (\i,-2ex) {\i};
% }
 
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Click to download: finding-brewster-angle.tex
Open in Overleaf: finding-brewster-angle.tex
This file is available on GitHub.
See more on the author page of Alexandros Tsagkaropolulos.

Leave a Reply

Your email address will not be published.