Isolation (blue) and signal cone (red) of a hadronically decayed tau, and for comparison an electron, muon and quark/gluon-initiated jet. For more related figures, please see the “jet” tag or the Particle Physics category. The cones are constructed with the tangent methods presented here. The neutrinos from τ decay are invisible to the detector and are not shown in the illustrations below.
A hadronic jet initiated by a τ lepton that decays to a charge pion (“one prong”), and two neutral pions (π0s):
A hadronic jet initiated by a τ lepton that decays to three charge pions (“three prong”) plus one π0:
An isolated electron, that may be misidentified as a τ lepton decay to a single charged pion (“one prong”):
An isolated muon, that may be misidentified as a τ lepton decay to a single charged pion (“one prong”):
A hadronic jet initiated by a quark or gluon, which tend to have more activity in the isolation cone:
Edit and compile if you like:
% Author: Izaak Neutelings (November 2021)% Description: jet cones for taus & others\documentclass[border=3pt,tikz]{standalone}\usetikzlibrary{calc}\usetikzlibrary{math} % for \tikzmath\tikzset{>=latex} % for LaTeX arrow head\colorlet{myblue}{blue!70!black}%\colorlet{mydarkblue}{blue!50!black}\colorlet{mygreen}{green!60!black}\colorlet{myred}{red!75!black}\colorlet{isocol}{blue!70!black} % color isolation cone\colorlet{sigcol}{red!90!black} % color isolation cone\tikzstyle{track}=[->,line width=0.6,myred]\tikzstyle{dashed track}=[->,mygreen,line width=0.6,line cap=round,dash pattern=on 2.3 off 2.0]\newcommand\jetcone[6][sigcol]{{\pgfmathanglebetweenpoints{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}\pgfmathsetmacro\oang{#4/2} % half-opening angle\edef\e{#5} % ratio a/b\def\tmpL{tmpL-#2-#3} % unique coordinate name\edef\vang{\pgfmathresult} % angle of vector OV\tikzmath{coordinate \C;\C = (#2)-(#3);\x = veclen(\Cx,\Cy)*\e*sin(\oang)^2; % x coordinate P\y = tan(\oang)*(veclen(\Cx,\Cy)-\x); % y coordinate P\a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\oang); % vertical radius\b = veclen(\Cx,\Cy)*tan(\oang)*sqrt(1-\e*sin(\oang)^2); % horizontal radius\angb = acos(sqrt(\e)*sin(\oang)); % angle of P in ellipse}\coordinate (\tmpL) at ($(#3)-(\vang:\x pt)+(\vang+90:\y pt)$); % tangency\draw[thin,#1!50!black,fill=#1!80!black!50,rotate=\vang] % cone back(\tmpL) arc(180-\angb:180+\angb:{\a pt} and {\b pt})-- ($(#2)+(0.01,0)$) -- cycle;\draw[thin,#1!50!black,rotate=\vang, % cone insidetop color=#1!60!black!60,bottom color=#1!50!black!75,shading angle=\vang](#3) ellipse({\a pt} and {\b pt});#6 % extra tracks\draw[thin,#1!50!black,rotate=\vang,fill opacity=0.80, % cone front
Click to download: jet_tau.tex • jet_tau.pdf
Open in Overleaf: jet_tau.tex