TikZ-reproduction of fig. 1 from the paper MADE: Masked Autoencoder for Distribution Estimation (arxiv:1502.03509).
Edit and compile if you like:
% TikZ-reproduction of fig. 1 from the paper MADE: Masked Autoencoder for Distribution Estimation (https://arxiv.org/abs/1502.03509). \documentclass[tikz]{standalone} \usepackage{xstring} \usetikzlibrary{calc,positioning} \newcommand\drawNodes[2]{ % #1 (str): namespace % #2 (list[list[str]]): list of labels to print in the node of each neuron \foreach \neurons [count=\lyrIdx] in #2 { \StrCount{\neurons}{,}[\lyrLength] % use xstring package to save each layer size into \lyrLength macro \foreach \n [count=\nIdx] in \neurons \node[neuron] (#1-\lyrIdx-\nIdx) at (\lyrLength/2-\nIdx, 1.5*\lyrIdx) {\n}; } } \newcommand\denselyConnectNodes[2]{ % #1 (str): namespace % #2 (list[int]): number of nodes in each layer \foreach \n [count=\lyrIdx, remember=\lyrIdx as \previdx, remember=\n as \prevn] in #2 { \foreach \y in {1,...,\n} { \ifnum \lyrIdx > 1 \foreach \x in {1,...,\prevn} \draw[->] (#1-\previdx-\x) -- (#1-\lyrIdx-\y); \fi } } } \newcommand\connectSomeNodes[2]{ % #1 (str): namespace % #2 (list[list[list[int]]]): for each node in each layer, list all connected nodes in the next layer \foreach \layer [count=\lyrIdx, evaluate=\lyrIdx as \nextLyr using int(\lyrIdx+1)] in #2 \foreach \neuron [count=\nIdx] in \layer \foreach \edge in \neuron \draw[->] (#1-\lyrIdx-\nIdx) -- (#1-\nextLyr-\edge); } \begin{document} \begin{tikzpicture}[ shorten >=1pt, shorten <=1pt, neuron/.style={circle, draw, minimum size=4ex, thick}, legend/.style={font=\large\bfseries}, ] % Fully-connected neural net \drawNodes{fcnn}{{{,,}, {,,,}, {,,,}, {,,}}} \denselyConnectNodes{fcnn}{{3, 4, 4, 3}} \path (fcnn-1-1) -- (fcnn-2-1) node[midway, right=1ex] (W1) {$W_1$}; \path (fcnn-2-1) -- (fcnn-3-1) node[midway, right=1ex] (W2) {$W_2$}; \path (fcnn-3-1) -- (fcnn-4-1) node[midway, right=1ex] (V) {$V$}; % MADE net \begin{scope}[xshift=9cm] \drawNodes{made}{{{3,1,2}, {2,1,2,2}, {1,2,2,1}, {3,1,2}}} \connectSomeNodes{made}{{ {{}, {1,2,3,4}, {1,3,4}}, {{2,3}, {1,2,3,4}, {2,3}, {2,3}}, {{1,3}, {1}, {1}, {1,3}}, }} \end{scope} % Input + output labels \foreach \idx in {1,2,3} { \node[below=0 of fcnn-1-\idx] {$x_\idx$}; \node[above=0 of fcnn-4-\idx] {$\hat x_\idx$}; \node[below=0 of made-1-\idx] {$x_\idx$}; } % MADE output labels \node[xshift=2.5ex, above=0 of made-4-1] {$p(x_3|x_2)$}; \node[above=0 of made-4-2] {$p(x_2)$}; \node[xshift=-4ex, above=0 of made-4-3] {$p(x_1|x_2,x_3)$}; % Bottom legend \node[legend, below=of fcnn-1-2] (encoder) {autoencoder}; \node[legend, below=of made-1-2] (made) {MADE}; \node[legend, right=2.5cm of encoder] (masks) {masks}; \node[legend, yshift=-1pt] (masks) at ($(encoder)!0.55!(masks)$) {\texttimes}; \node[legend, yshift=-1pt] (masks) at ($(masks)!0.65!(made)$) {$\longrightarrow$}; % Mask matrices \begin{scope}[shift={(3cm,5cm)}, scale=0.4] \draw (0,0) grid (4,3); \node at (-1.8,1.5) {$M_V =$}; \fill[black] (0,1) rectangle ++(4,1); \fill[black] (1,0) rectangle ++(2,1); \begin{scope}[yshift=-5cm] \draw (0,0) grid (4,4); \node at (-1.8,2) {$M_{W_2} =$}; \fill[black] (0,0) rectangle ++(1,1); \fill[black] (0,3) rectangle ++(1,1); \fill[black] (2,0) rectangle ++(2,1); \fill[black] (2,3) rectangle ++(2,1); \end{scope} \begin{scope}[yshift=-10cm] \draw (0,0) grid (3,4); \node at (-1.8,2) {$M_{W_1} =$}; \fill[black] (0,0) rectangle ++(1,4); \fill[black] (2,2) rectangle ++(1,1); \end{scope} \end{scope} \end{tikzpicture} \end{document}
Click to download: made.tex
Open in Overleaf: made.tex
This file is available on tikz.netlify.app and on GitHub and is MIT licensed.
See more on the author page of Janosh Riebesell..