Decibel scale, with some intuitive examples.
% Author: Izaak Neutelings (June 2020) % Inspiration: % https://courses.physics.ucsd.edu/2011/Summer/session1/physics2c/diffraction.pdf % https://tex.stackexchange.com/questions/201830/periodic-shading-in-tikz \documentclass[border=3pt,tikz]{standalone} \usepackage[outline]{contour} % glow around text \usepackage{physics} \usepackage{xcolor} \usepackage{etoolbox} %ifthen \usetikzlibrary{calc} \usetikzlibrary{arrows,arrows.meta} \usetikzlibrary{decorations.markings} \usetikzlibrary{angles,quotes} % for pic (angle labels) \usetikzlibrary{fadings} \tikzset{>=latex} % for LaTeX arrow head \contourlength{1.4pt} \colorlet{wall}{blue!30!black} \colorlet{myblue}{blue!70!black} \colorlet{myred}{red!70!black} \colorlet{mydarkred}{red!50!black} \colorlet{mylightgreen}{green!60!black!70} \colorlet{mygreen}{green!60!black} \colorlet{myredgrey}{red!50!black!80} \colorlet{myshadow}{blue!30!black!90} \tikzstyle{wave}=[myblue,thick] \tikzstyle{mydashed}=[black!70,dashed,thin] \tikzstyle{mymeas}=[{Latex[length=3,width=2]}-{Latex[length=3,width=2]},thin] \tikzstyle{mysmallarr}=[-{Latex[length=3,width=2]}] \newcommand\rightAngle[4]{ \pgfmathanglebetweenpoints{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}} \coordinate (tmpRA) at ($(#2)+(\pgfmathresult+45:#4)$); \draw[white,line width=0.6] ($(#2)!(tmpRA)!(#1)$) -- (tmpRA) -- ($(#2)!(tmpRA)!(#3)$); \draw[mydarkred] ($(#2)!(tmpRA)!(#1)$) -- (tmpRA) -- ($(#2)!(tmpRA)!(#3)$); } \newcommand\lineend[2]{ \def\w{0.1} \def\c{30} \draw[mygreen] (#1)++(#2:\w) to[out=#2-180-\c,in=#2+\c] (#1) to[out=#2+\c-180,in=#2-\c]++ (#2-180:\w); } \def\tick#1#2{\draw[thick] (#1) ++ (#2:0.1) --++ (#2-180:0.2)} % INTERFERENCE FADING \begin{tikzfadingfrompicture}[name=interference] \def\lambd{0.5} % wavelength \foreach \r in {1,...,15} \foreach \j in {1,...,25} \path [line width=\lambd*\j,draw=transparent!0,opacity=0.04] (0,0) circle (\lambd*\r); %(0:\r) arc (0:180:\r); \end{tikzfadingfrompicture} \begin{document} % INTERFERENCE FADING \begin{tikzpicture} \def\a{2} % distance sources \def\W{8} % distance between walls \def\H{8} % total wall height %\clip (-\W/2,0) rectangle ++(\W,\H); \path[fill=myshadow,path fading=interference,fit fading=false,fading transform={shift={(0,\a/2)}}] %,shift={(-2,0)} (0,-\H/2) rectangle ++(\W,\H); \path[fill=myshadow,path fading=interference,fit fading=false,fading transform={shift={(0,-\a/2)}}] %rotate=45 (0,-\H/2) rectangle ++(\W,\H); %\draw (0,0) --++ (0,\H); \end{tikzpicture} % TWO SPLIT \begin{tikzpicture}[ nodal/.style={mylightgreen,dashed,very thin}, declare function={ %xnode(\n,\dn,\lam,\f) = sqrt( (\n^2+(\n+\dn)^2)*\lambd^2/2 - (\n^2-(\n+\dn)^2)^2*\lambd^4/(4*\a^2) - \a^2/4 ); xnode(\n,\dn,\lam,\f) = \lam/\f*sqrt( \n^2*(\f^2-\dn^2)+\n*\dn*(\f^2-\dn^2)+\dn^2*\f^2/2-(\f^4+\dn^4)/4 ); ynode(\n,\dn,\lam,\a) = (2*\n*\dn+\dn^2)*\lam/(2*\f); intensity(\y,\lam,\a,\L) = cos(180*\a*\y/(2*\lam*sqrt(\L*\L+\y*\y)))^2; } ] \def\L{3.8} % distance between walls \def\H{5.4} % total wall height \def\h{2.8} % plane wave height \def\t{0.15} % wall thickness \def\a{1.15} % slit distance \def\d{0.20} % slit size \def\N{21} % number of waves \def\lambd{0.20} % wavelength \def\R{\N*\lambd} % wave radius \def\Nlines{3} % number of nodal lines \def\A{1.6} % amplitude %\def\r{0.06} % point source radius %\def\nmax{10} \def\nsamples{100} \def\ang{62} \begin{scope} \clip (-\t/2,-\H/2) rectangle (\L,\H/2); %\clip (-\t/2,0.7*\a) -- (0.6*\L,\H/2) -- (\L,\H/2) -- % (\L,-\H/2) -- (0.6*\L,-\H/2) -- (-\t/2,-0.7*\a) -- cycle; % NODAL LINES \draw[nodal] (0.08*\N*\lambd,0) -- (1.06*\R,0); \coordinate (NP0) at (\L,0); % to avoid "Dimension too large error" \foreach \dn [evaluate={ \f=\a/\lambd; \nmin=2.5+0.2*\dn; %0.501*(-\dn+\f) \nmax=10; %(NP0) \c=int(\dn<\f); \y=\L/sqrt((\a/(\lambd*\dn))^2-1); }] in {1,...,\Nlines}{ \coordinate (NP+\dn) at (\L,\y); % to avoid "Dimension too large error" \coordinate (NP-\dn) at (\L,-\y); % to avoid "Dimension too large error" \ifnum\c=1 \draw[nodal,variable=\n,samples=\nsamples,smooth] plot[domain=\nmin:\nmax] ({xnode(\n,\dn,\lambd,\f)},{ynode(\n,\dn,\lambd,\f)}) -- (NP+\dn); \draw[nodal,variable=\n,samples=\nsamples,smooth] plot[domain=\nmin:\nmax] ({xnode(\n,\dn,\lambd,\f)},{-ynode(\n,\dn,\lambd,\f)}) -- (NP-\dn); \fi } % WAVES \foreach \i [evaluate={\R=\i*\lambd;}] in {1,...,\N}{ \ifodd\i \draw[myblue,line width=0.8] (0,\a/2)++(\ang:\R) arc (\ang:-\ang:\R); \draw[myred,line width=0.8] (0,-\a/2)++(\ang:\R) arc (\ang:-\ang:\R); \else \draw[myblue!80,line width=0.1] (0,\a/2)++(\ang:\R) arc (\ang:-\ang:\R); \draw[myred!80,line width=0.1] (0,-\a/2)++(\ang:\R) arc (\ang:-\ang:\R); \fi } \end{scope} % PLANE WAVES \foreach \i [evaluate={\x=-\i*\lambd;}] in {0,...,5}{ \ifodd\i \draw[myblue,line width=0.8] (\x,-\h/2) -- (\x,\h/2); \else \draw[myblue,line width=0.1] (\x,-\h/2) -- (\x,\h/2); \fi } % WALL \fill[wall] (\t/2,\a/2-\d/2) rectangle (-\t/2,-\a/2+\d/2) (\t/2,\a/2+\d/2) rectangle (-\t/2,\H/2) (\t/2,-\a/2-\d/2) rectangle (-\t/2,-\H/2) (\L,-\H/2) rectangle (\L+\t,\H/2); % SHADES \begin{scope}[shift={(1.08*\L,0)}] \def\yz{\L/sqrt((\a/\lambd)^2-1)} % m = +- 1/2 \def\yZ{\L/sqrt((\a/\lambd/2)^2-1)} % m = +- 1 \clip (0,-\H/2) rectangle (1.1*\A,\H/2); \fill[white] (0,-\H/2) rectangle++ (\A,\H); % to fill seams \foreach \i [evaluate={\n=0.5*\i;\yn=\L/sqrt((\a/(2*\lambd*\n))^2-1); }] in {1,...,\Nlines}{ \ifodd\i % if even \fill[myshadow] (0,{-\yn-0.1}) rectangle++ (\A,0.2); % to fill seams \fill[myshadow] (0,{ \yn-0.1}) rectangle++ (\A,0.2); % to fill seams \fi } \path[left color=myshadow,right color=myshadow,middle color=white,shading angle={180}] (0,{-\yz}) rectangle (\A,{\yz}); \foreach \i [evaluate={ \n=0.5*\i; \m=0.5*(\i+1); \yn=\L/sqrt((\a/(2*\lambd*\n))^2-1); \ym=\L/sqrt((\a/(2*\lambd*\m))^2-1); \dang=mod(\i,2)*180; }] in {1,...,\Nlines}{ \path[left color=myshadow,right color=white,shading angle={\dang}] (0,\yn) rectangle (\A,\ym); \path[left color=myshadow,right color=white,shading angle={180+\dang}] (0,-\yn) rectangle (\A,-\ym); } \end{scope} % INTENSITY \begin{scope}[shift={(1.1*\L+1.1*\A,0)}] \draw[->,thick] (-0.08*\A,0) -- (1.3*\A,0) node[right=-2] {$\expval{I}$}; % I axis \draw[->,thick] (0,-0.52*\H) -- (0,0.54*\H) node[right] {$y$}; % y axis \draw[nodal] (NP0) --++ (0.15*\L+2.1*\A,0); % green nodal lines \foreach \i [evaluate={\y=\L/sqrt((\a/(\lambd*\i))^2-1)}] in {1,...,\Nlines}{ % green nodal lines \draw[nodal] (NP+\i) --++ ({0.15*\L+1.1*\A+\A*intensity(\y,\lambd,\a,\L)},0); \draw[nodal] (NP-\i) --++ ({0.15*\L+1.1*\A+\A*intensity(\y,\lambd,\a,\L)},0); } \draw[myred,thick,variable=\y,samples=\nsamples,smooth,domain=-\H/2:\H/2] plot({\A*intensity(\y,\lambd,\a,\L)},\y); \foreach \i [evaluate={ % ticks \modd=\i; %int(\i); \meven=int(\i-1); \y=\L/sqrt((\a/(\lambd*\i))^2-1); }] in {1,...,\Nlines}{ \ifodd\i \tick{0,-\y}{180} node[right=0,scale=0.85] {$m=-\frac{\modd}{2}$}; \tick{0,\y}{180} node[right=0,scale=0.85] {$m=+\frac{\modd}{2}$}; \else \tick{0,-\y}{180} node[right=0,scale=0.85] {$m=-\meven$}; \tick{0,\y}{180} node[right=0,scale=0.85] {$m=+\meven$}; \fi } \end{scope} \end{tikzpicture} % TWO SLIT PATH DIFFERENCE \begin{tikzpicture} \def\L{5.9} % distance between walls \def\H{3.0} % total wall height \def\f{0.9} % fractional height of projection point \def\ang{atan((\f*\H+\a)/\L/2)} % theta \def\t{0.15} % wall thickness \def\a{1.5} % slit distance \def\d{0.20} % slit size \coordinate (T) at (0,\a/2); \coordinate (B) at (0,-\a/2); \coordinate (L) at (0,0); \coordinate (R) at (\L,0); \coordinate (P) at (\L,\f*\H/2); \coordinate (M) at ($(B)!(T)!(P)$); % LINES \draw[mygreen,thick] (T) -- (P) node[midway,above=-1] {$r_1$}; \draw[mygreen,thick] (B) -- (P) node[midway,below=3,right=6] {$r_2$}; %right=6,below right=-4 \draw[dashed] (L) -- (P); \draw[dashed,black!60] (L) -- (R); \draw[mydarkred,dashed] (M) -- (T); % ANGLES \draw pic[mysmallarr,"$\theta'$",mydarkred,draw=mydarkred,angle radius=26,angle eccentricity=1.25] {angle = B--T--M}; \draw pic[mysmallarr,"$\theta$",mydarkred,draw=mydarkred,angle radius=38,angle eccentricity=1.14] {angle = R--L--P}; \rightAngle{T}{M}{P}{0.3} % MEASURES \draw[<->,black] (0,-0.47*\H) --++ (\L,0) node[midway,fill=white,inner sep=1] {$L$}; \draw[<->,black] (-2.1*\t,-\a/2) --++ (0,\a) node[midway,fill=white,inner sep=1] {$a$}; \draw[<->,black] ([shift={({\ang-90}:0.1)}]B) -- ([shift={({\ang-90}:0.1)}]M) node[midway,above=1,below right=-3]{$a\sin\theta'$}; \draw[<->,black] ([shift={(2.1*\t,0)}]P) -- ([shift={(2.1*\t,0)}]R) node[midway,fill=white,inner sep=1]{$y$}; % WALL \fill[wall] (0,\a/2-\d/2) rectangle (-\t,-\a/2+\d/2) (0,\a/2+\d/2) rectangle (-\t,\H/2) (0,-\a/2-\d/2) rectangle (-\t,-\H/2) (\L,-\H/2) rectangle (\L+\t,\H/2); \fill[mygreen!80!black] (P) circle (0.3*\t) node[right=1,above left=-2] {P}; \end{tikzpicture} % TWO SLIT PATH DIFFERENCE close up \begin{tikzpicture} \def\L{5.5} % distance between walls \def\l{3.8} % distance between walls \def\H{3.5} % total wall height \def\f{0.9} % fractional height of projection point \def\t{0.15} % wall thickness \def\a{1.6} % slit distance \def\d{0.20} % slit size \def\ang{27} % angle \coordinate (T) at (0,\a/2); \coordinate (B) at (0,-\a/2); \coordinate (L) at (0,0); \coordinate (R) at (\L,0); \coordinate (I) at ({\a/2/tan(\ang)},0); % LINES \draw[mygreen,thick] (T) --++ (\ang:.8*\l) coordinate (PT) node[midway,below=1,above left=-2] {$r_1$}; \draw[mygreen,thick] (B) --++ (\ang:\l) coordinate (PB) node[midway,left=2,below right=-1] {$r_2$}; \draw[mydarkred,dashed] (T) -- ($(B)!(T)!(PB)$) coordinate (M); \draw[black!60,dashed] (L) --++ (\ang:.9*\l) coordinate (PR); %\draw[black!60,dashed] (T) --++ (.20*\L,0) coordinate (TR); \draw[black!60,dashed] (L) --++ (.6*\L,0) coordinate (LR); %\draw[black!60,dashed] (B) --++ (.20*\L,0) coordinate (BR); % LINE END \lineend{PT}{\ang+70} \lineend{PB}{\ang+70} % ANGLES \draw pic[mysmallarr,"\contour{white}{$\theta$}",mydarkred,draw=mydarkred,angle radius=18.8,angle eccentricity=1.38 ] {angle = B--T--M}; %\draw pic[->,"$\theta$",mydarkred,draw=mydarkred,angle radius=16,angle eccentricity=1.41] % {angle = TR--T--PT}; %\draw pic[->,"$\theta$",mydarkred,draw=mydarkred,angle radius=16,angle eccentricity=1.41] % {angle = BR--B--PB}; \draw pic[mysmallarr,"$\theta$",mydarkred,draw=mydarkred,angle radius=22,angle eccentricity=1.25] {angle = LR--L--PR}; \draw pic[mysmallarr,"$\theta$",mydarkred,draw=mydarkred,angle radius=22,angle eccentricity=1.30] {angle = LR--I--PB}; \rightAngle{T}{M}{PB}{0.3} % MEASURES \draw[<->,black] (-2.2*\t,-\a/2) --++ (0,\a) node[midway,fill=white,inner sep=1.5] {$a$}; \draw[<->,black] ([shift={({\ang-90}:0.1)}]B) -- ([shift={({\ang-90}:0.1)}]M) node[midway,above=1,below right=-3]{$a\sin\theta$}; % WALL \fill[wall] (0,\a/2-\d/2) rectangle (-\t,-\a/2+\d/2) (0,\a/2+\d/2) rectangle (-\t,\H/2) (0,-\a/2-\d/2) rectangle (-\t,-\H/2); \end{tikzpicture} \end{document}
Click to download: optics_twoslit.tex • optics_twoslit.pdf
Open in Overleaf: optics_twoslit.tex