Edit and compile if you like:
\documentclass[tikz]{standalone} \usetikzlibrary{calc} \def\layersep{3cm} \newcommand\nn[1]{ % Input layer \foreach \y in {1,...,2} \node[neuron, fill=green!40] (i\y-#1) at (0,\y+1) {$i\y$}; % Hidden layer \foreach \y in {1,...,4} \path node[neuron, fill=blue!40] (h\y-#1) at (\layersep,\y) {$h\y$}; % Output node \node[neuron, fill=red!40] (o-#1) at (2*\layersep,2.5) {$o$}; % Connect every node in the input layer with every node in the hidden layer. \foreach \source in {1,...,2} \foreach \dest in {1,...,4} \path (i\source-#1) edge (h\dest-#1); % Connect every node in the hidden layer with the output layer \foreach \source in {1,...,4} \path (h\source-#1) edge (o-#1); } \begin{document} \begin{tikzpicture}[ scale=1.2, shorten >=1pt,->,draw=black!70, node distance=\layersep, neuron/.style={circle,fill=black!25,minimum size=20,inner sep=0}, edge/.style 2 args={pos={(mod(#1+#2,2)+1)*0.33}, font=\tiny}, distro/.style 2 args={ edge={#1}{#2}, node contents={}, minimum size=0.6cm, path picture={\draw[double=orange,white,thick,double distance=1pt,shorten >=0pt] plot[variable=\t,domain=-1:1,samples=51] ({\t},{0.2*exp(-100*(\t-0.05*(#1-1))^2 - 3*\t*#2))});} }, weight/.style 2 args={ edge={#1}{#2}, node contents={\pgfmathparse{0.35*#1-#2*0.15}\pgfmathprintnumber[fixed]{\pgfmathresult}}, fill=white, inner sep=2pt } ] \nn{regular} \begin{scope}[xshift=8cm] \nn{bayes} \end{scope} % Draw weights for all regular edges. \foreach \i in {1,...,2} \foreach \j in {1,...,4} \path (i\i-regular) -- (h\j-regular) node[weight={\i}{\j}]; \foreach \i in {1,...,4} \path (h\i-regular) -- (o-regular) node[weight={\i}{1}]; % Draw distros for all Bayesian edges. \foreach \i in {1,...,2} \foreach \j in {1,...,4} \path (i\i-bayes) -- (h\j-bayes) node[distro={\i}{\j}]; \foreach \i in {1,...,4} \path (h\i-bayes) -- (o-bayes) node[distro={\i}{1}]; \end{tikzpicture} \end{document}
Click to download: regular-vs-bayes-nn.tex
Open in Overleaf: regular-vs-bayes-nn.tex
This file is available on tikz.netlify.app and on GitHub and is MIT licensed.
See more on the author page of Janosh Riebesell..