

Take an upward (convex) parabola with a quadratic equation

$$
\begin{equation*}
y=A(x-a)^{2}+b, \tag{1}
\end{equation*}
$$

with real $A, b>0$. If $a=0$, there two imaginary roots

$$
x= \pm i \sqrt{\frac{b}{A}} .
$$

If $a \neq 0$, there are two complex solutions

$$
x=a \pm i \sqrt{\frac{b}{A}}
$$

To extend the graph from the real x axis to the complex plane, substitute a complex number $z=x+i t$ for real x, t :

$$
y=\operatorname{Re}\left[A(x+i t-a)^{2}+b\right] .
$$

Rewriting,

$$
y=\operatorname{Re}\left[A(x-a)^{2}-A t^{2}+b\right] .
$$

If $t=0$, we retrieve the "real parabola" (1). The "complex parabola" that has the same solution for $x=a$ is

$$
y=b-A t^{2}
$$

