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Take an upward (convex) parabola with a quadratic equation

y = A(x− a)2 + b, (1)

with real A, b > 0. If a = 0, there two imaginary roots

x = ±i
√

b

A
.

If a 6= 0, there are two complex solutions

x = a± i

√
b

A
.

To extend the graph from the real x axis to the complex
plane, substitute a complex number z = x+ it for real x, t:

y = Re
[
A(x+ it− a)2 + b

]
.

Rewriting,
y = Re

[
A(x− a)2 −At2 + b

]
.

If t = 0, we retrieve the “real parabola” (1). The “complex
parabola” that has the same solution for x = a is

y = b−At2.


