

The differential equation for a simple pendulum is

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+\omega_{0}^{2} \sin \theta=0
$$

For the initial conditions

$$
\left\{\begin{array}{l}
\theta(0)=\theta_{0} \\
\left.\frac{\mathrm{~d} \theta}{\mathrm{~d} t}\right|_{0}=0
\end{array}\right.
$$

with $0<\theta_{0}<\pi$, the bounded solution is given by

$$
\theta(t)=2 \arcsin \left[k \operatorname{sn}\left(\frac{\omega_{0} T}{4}-\omega_{0} t, k^{2}\right)\right] \leq \theta_{0},
$$

where

$$
T=\frac{4 K\left(k^{2}\right)}{\omega_{0}}, \quad k=\sin \frac{\theta_{0}}{2}
$$

and where sn is the Jacobi elliptic functions, and K is complete elliptic integral of the first kind. The first derivative is

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-\frac{2 k \omega_{0}}{\sqrt{1-\left(k \operatorname{sn}\left(\alpha, k^{2}\right)\right)^{2}}} \operatorname{cn}\left(\alpha, k^{2}\right) \operatorname{dn}\left(\alpha, k^{2}\right)
$$

with $\alpha=\omega_{0} T / 4-\omega_{0} t$. The maximum angular velocity is

$$
\Omega_{\max }=\left.\frac{\mathrm{d} \theta}{\mathrm{~d} t}\right|_{T / 2}=2 k \omega_{0} .
$$

Therefore, the total energy is

$$
E=\frac{m g^{2} \Omega_{\max }^{2}}{2 \omega_{0}^{4}}=2 \frac{m g^{2}}{\omega_{0}^{2}} \sin ^{2} \frac{\theta_{0}}{2} .
$$

with kinetic and potential energy

$$
\begin{aligned}
K & =\frac{m g^{2}}{2 \omega_{0}^{4}}\left(\frac{\mathrm{~d} \theta}{\mathrm{~d} t}\right)^{2}=2 \frac{m g^{2}}{\omega_{0}^{2}}\left(\sin ^{2} \frac{\theta_{0}}{2}-\sin ^{2} \frac{\theta}{2}\right) \\
U & =2 \frac{m g^{2}}{\omega_{0}^{2}} \sin ^{2} \frac{\theta}{2} .
\end{aligned}
$$

The differential equation for a simple pendulum is

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+\omega_{0}^{2} \sin \theta=0
$$

For the initial conditions

$$
\left\{\begin{array}{c}
\theta(0)=0 \\
\left.\frac{\mathrm{~d} \theta}{\mathrm{~d} t}\right|_{0}=\Omega_{0}
\end{array}\right.
$$

with $\Omega_{0}>2 \omega_{0}$, the unbounded solution is given by

$$
\theta(t)=2 \arcsin \left[\operatorname{sn}\left(\frac{\Omega_{0}}{2} t, \frac{1}{k^{2}}\right)\right] \geq 0
$$

where

$$
T=\frac{4 K\left(k^{2}\right)}{\Omega_{0}}, \quad k=\frac{\Omega_{0}}{2 \omega_{0}}>2
$$

and where sn is the Jacobi elliptic functions, and K is complete elliptic integral of the first kind. Note that the solution $\theta(t)$ is continuous and increase monotonically, so if one assumes $|\arcsin x| \leq \pi / 2$ for each real x,

$$
\theta(t)=2 \pi n+(-1)^{n} 2 \arcsin \left[\operatorname{sn}\left(\frac{\Omega_{0}}{2} t, \frac{1}{k^{2}}\right)\right]
$$

where $n=\lfloor(t+T / 2) / T\rfloor=\lfloor t / T+1 / 2\rfloor$.
The first derivative is

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=2 \Omega_{0} \operatorname{dn}\left(\frac{\Omega_{0}}{2} t, \frac{1}{k^{2}}\right)
$$

The maximum angular velocity $\Omega_{\max }=\Omega_{0}$, and the minimum is

$$
\Omega_{\min }=2 \omega_{0} \sqrt{k^{2}-1}
$$

