Thermoelectric figure of merit $zT$ vs carrier concentration $n$ for \ch{Bi2Te3} based on empirical data in ref.~\cite{rowe_alpha-sigma_1995}. Tuning $n$ for optimal $zT$ involves a compromise between thermal conductivity $\kappa$, Seebeck coefficient $S$ and electrical conductivity $\sigma$.
Increasing the electrical conductivity $\sigma$ not only produces an increase in the electronic thermal conductivity $\kappa_\text{el}$ but also usually decreases the Seebeck coefficient $S$. This makes optimal $\zT$ difficult to achieve. Plot scales are $\kappa/\si{\watt\per\meter\per\kelvin} \in [0,10]$, $S/\si{\micro\volt\per\kelvin} \in [0,500]$, $\sigma/\si{\per\ohm\per\centi\meter} \in [0,5000]$.
Edit and compile if you like:
% Thermoelectric figure of merit $zT$ vs carrier concentration $n$ for \ch{Bi2Te3} based on empirical data in ref.~\cite{rowe_alpha-sigma_1995}. Tuning $n$ for optimal $zT$ involves a compromise between thermal conductivity $\kappa$, Seebeck coefficient $S$ and electrical conductivity $\sigma$. Increasing the electrical conductivity $\sigma$ not only produces an increase in the electronic thermal conductivity $\kappa_\text{el}$ but also usually decreases the Seebeck coefficient $S$. This makes optimal $\zT$ difficult to achieve. Plot scales are $\kappa/\si{\watt\per\meter\per\kelvin} \in [0,10]$, $S/\si{\micro\volt\per\kelvin} \in [0,500]$, $\sigma/\si{\per\ohm\per\centi\meter} \in [0,5000]$. \documentclass[tikz]{standalone} \usepackage{pgfplots,siunitx} \pgfplotsset{compat=newest} \begin{document} \begin{tikzpicture} \begin{axis}[ xmode=log, domain=1e17:1e21, ymax=1, enlargelimits=false, ylabel=$zT$, xlabel=Carrier concentration $n$ (\si{\per\centi\meter\cubed}), grid=both, width=12cm, height=8cm, decoration={name=none}, ] \addplot [ultra thick, smooth, red!85!black] coordinates { (1.174e+18, 0.2317) (1.551e+18, 0.2787) (2.016e+18, 0.3300) (2.549e+18, 0.3816) (3.171e+18, 0.4332) (3.891e+18, 0.4842) (4.697e+18, 0.5373) (5.623e+18, 0.5892) (6.714e+18, 0.6404) (8.017e+18, 0.6923) (9.650e+18, 0.7450) (1.178e+19, 0.7963) (1.461e+19, 0.8486) (1.878e+19, 0.8964) (2.481e+19, 0.9278) (3.279e+19, 0.9318) (4.334e+19, 0.9057) (5.515e+19, 0.8571) (6.662e+19, 0.8045) (7.767e+19, 0.7519) (8.859e+19, 0.7000) (1.008e+20, 0.6476) (1.143e+20, 0.5953) (1.290e+20, 0.5449) (1.447e+20, 0.4906) (1.628e+20, 0.4374) (1.837e+20, 0.3850) (2.101e+20, 0.3327) (2.436e+20, 0.2799) (2.887e+20, 0.2281) (3.594e+20, 0.1753) (4.674e+20, 0.1271) (6.178e+20, 0.08917) (8.167e+20, 0.06240) (1e+21, 0.05) } node[pos=0.48, anchor=north] {$zT$}; \addplot [ultra thick, smooth, blue!70!black] coordinates { (1.176e+18, 0.005689) (1.554e+18, 0.008070) (2.054e+18, 0.009285) (2.714e+18, 0.01216) (3.587e+18, 0.01561) (4.740e+18, 0.02190) (6.264e+18, 0.02984) (8.277e+18, 0.04013) (1.094e+19, 0.05127) (1.445e+19, 0.06820) (1.910e+19, 0.09120) (2.511e+19, 0.1191) (3.333e+19, 0.1593) (4.344e+19, 0.2072) (5.433e+19, 0.2587) (6.613e+19, 0.3123) (7.852e+19, 0.3739) (8.925e+19, 0.4266) (1.001e+20, 0.4779) (1.110e+20, 0.5310) (1.224e+20, 0.5824) (1.335e+20, 0.6359) (1.441e+20, 0.6893) (1.551e+20, 0.7425) (1.660e+20, 0.7960) (1.767e+20, 0.8478) (1.876e+20, 0.9009) (1.986e+20, 0.9532) (2.08e+20, 1) } node[pos=0.95, anchor=east] {$\sigma$}; \addplot [ultra thick, smooth, green!70!black] coordinates { (1.175e+18, 0.08187) (1.553e+18, 0.08218) (2.053e+18, 0.08379) (2.713e+18, 0.08472) (3.585e+18, 0.08684) (4.738e+18, 0.08916) (6.261e+18, 0.09142) (8.274e+18, 0.09411) (1.093e+19, 0.09912) (1.445e+19, 0.1059) (1.909e+19, 0.1145) (2.523e+19, 0.1256) (3.334e+19, 0.1391) (4.405e+19, 0.1576) (5.821e+19, 0.1830) (7.691e+19, 0.2164) (1.016e+20, 0.2605) (1.302e+20, 0.3102) (1.589e+20, 0.3629) (1.882e+20, 0.4143) (2.181e+20, 0.4641) (2.472e+20, 0.5181) (2.764e+20, 0.5714) (3.066e+20, 0.6246) (3.363e+20, 0.6780) (3.669e+20, 0.7310) (3.981e+20, 0.7826) (4.273e+20, 0.8389) (4.560e+20, 0.8942) (4.868e+20, 0.9493) (5.2e+20, 1) } node[pos=0.95, anchor=west] {$\kappa$}; \addplot [ultra thick, smooth, orange] coordinates { (1.65e+18, 1) (1.931e+18, 0.9729) (2.553e+18, 0.9248) (3.375e+18, 0.8777) (4.462e+18, 0.8302) (5.899e+18, 0.7816) (7.745e+18, 0.7351) (1.031e+19, 0.6866) (1.363e+19, 0.6397) (1.802e+19, 0.5897) (2.382e+19, 0.5412) (3.149e+19, 0.4937) (4.162e+19, 0.4471) (5.503e+19, 0.3977) (7.117e+19, 0.3500) (9.181e+19, 0.2944) (1.224e+20, 0.2436) (1.618e+20, 0.2019) (2.138e+20, 0.1687) (2.826e+20, 0.1389) (3.736e+20, 0.1161) (4.938e+20, 0.09646) (6.321e+20, 0.08022) (8.578e+20, 0.06624) (1e+21, 0.06) } node[pos=0.1, anchor=south west] {$S$}; \addplot [ultra thick, smooth, cyan] coordinates { (1.159e+18, 0.04006) (1.532e+18, 0.04739) (2.025e+18, 0.05790) (2.676e+18, 0.06974) (3.386e+18, 0.08033) (4.675e+18, 0.09928) (6.179e+18, 0.1176) (8.168e+18, 0.1379) (1.080e+19, 0.1608) (1.427e+19, 0.1864) (1.886e+19, 0.2142) (2.492e+19, 0.2430) (3.294e+19, 0.2713) (4.353e+19, 0.2989) (5.754e+19, 0.3230) (7.605e+19, 0.3422) (1.005e+20, 0.3528) (1.314e+20, 0.3509) (1.757e+20, 0.3326) (2.327e+20, 0.3049) (3.071e+20, 0.2777) (4.061e+20, 0.2535) (5.369e+20, 0.2304) (7.098e+20, 0.2095) (1e+21, 0.185) } node[pos=0.4, anchor=south east] {$S^2 \sigma$}; \end{axis} \end{tikzpicture} \end{document}
Click to download: zt-vs-n.tex
Open in Overleaf: zt-vs-n.tex
This file is available on tikz.netlify.app and on GitHub and is MIT licensed.
See more on the author page of Janosh Riebesell..