Edit and compile if you like:
\documentclass{article} % % File name: concave-down-paraboloid.tex % Description: % The graph of the surface % z = 1 - x^{2} - y^{2} % for z >= 0 is generated. Also, the region x^2 + y^2 \leq 1 % is shown. % % Date of creation: April, 23rd, 2022. % Date of last modification: April, 23rd, 2022. % Author: Efraín Soto Apolinar. % https://www.aprendematematicas.org.mx/author/efrain-soto-apolinar/instructing-courses/ % Terms of use: % According to TikZ.net % https://creativecommons.org/licenses/by-nc-sa/4.0/ % \usepackage{tikz} \usetikzlibrary{patterns} \usepackage{tikz-3dplot} \usepackage[active,tightpage]{preview} \PreviewEnvironment{tikzpicture} \setlength\PreviewBorder{1pt} % \begin{document} % \tdplotsetmaincoords{60}{110} \begin{tikzpicture}[tdplot_main_coords,scale=2.0] \pgfmathsetmacro{\tini}{0.5*pi} \pgfmathsetmacro{\tfin}{1.85*pi} \pgfmathsetmacro{\tend}{2.5*pi} % Node indicating the equation of the circumference \draw[white] (1.35,0,0) -- (0,1.35,0) node [red,below,midway,sloped] {$x^2 + y^2 = 1$}; %%% Coordinate axis \draw[thick,->] (0,0,0) -- (1.5,0,0) node [below left] {\footnotesize$x$}; \draw[dashed] (0,0,0) -- (-1.25,0,0); \draw[thick,->] (0,0,0) -- (0,1.5,0) node [right] {\footnotesize$y$}; \draw[dashed] (0,0,0) -- (0,-1.25,0); \draw[thick] (0,0,0) -- (0,0,1.0); % The region of integration \fill[yellow,opacity=0.35] plot[domain=0:6.2832,smooth,variable=\t] ({cos(\t r)},{sin(\t r)},{0.0}); \draw[red,thick] plot[domain=0:6.2832,smooth,variable=\t] ({cos(\t r)},{sin(\t r)},{0.0}); % Circunference bounding the surface (for z = 0) \draw[black,thick,opacity=0.75] plot[domain=0:6.2832,smooth,variable=\t] ({cos(\t r)},{sin(\t r)},{0.0}); % The curves slicing the surface \draw[blue,thick,opacity=0.5] plot[domain=-1:1,smooth,variable=\t] ({\t},0,{1.0 - \t*\t}); \draw[blue,thick,opacity=0.5] plot[domain=-1:1,smooth,variable=\t] (0,{\t},{1.0 - \t*\t}); % Rotating a parabola about the z axis \foreach \angulo in {0,2,...,358}{ \draw[cyan,very thick,rotate around z=\angulo,opacity=0.15] plot[domain=0:1,smooth,variable=\t] ({0},{\t},{1.0 - \t*\t}); } % The paraboloid (for z = constant) \foreach \altura in {0.0125,0.025,...,1.0}{ \pgfmathparse{sqrt(\altura)} \pgfmathsetmacro{\radio}{\pgfmathresult} \draw[cyan,thick,opacity=0.35] plot[domain=\tini:\tfin,smooth,variable=\t] ({\radio*cos(\t r)},{\radio*sin(\t r)},{1.0 - \altura}); } % First part of the z axis \draw[thick,->] (0,0,1.0) -- (0,0,1.5) node [above] {\footnotesize$z$}; \foreach \altura in {0.0125,0.025,...,1.0}{ \pgfmathparse{sqrt(\altura)} \pgfmathsetmacro{\radio}{\pgfmathresult} \draw[cyan,thick,opacity=0.35] plot[domain=\tfin:\tend,smooth,variable=\t] ({\radio*cos(\t r)},{\radio*sin(\t r)},{1.0 - \altura}); } % \node[blue,right] at (0,0.5,1.125) {$z = 1 - x^2 - y^2$}; \end{tikzpicture} \end{document}
Click to download: concave-down-paraboloid.tex • concave-down-paraboloid.pdf
Open in Overleaf: concave-down-paraboloid.tex
See more on the author page of Efraín Soto Apolinar.