The curl of some simple vector fields. Also see the divergence examples, or other figures under the “vectors” tag: the vector sum rule, scalar product, right-hand rule.
Edit and compile if you like:
% Author: Izaak Neutelings (Februari, 2020) \documentclass[border=3pt,tikz]{standalone} \usepackage{amssymb} \usepackage{physics} \usepackage{bm} \usepackage{tikz} \tikzset{>=latex} % for LaTeX arrow head \usepackage{xcolor} \colorlet{veccol}{orange!90!black} \colorlet{myblue}{blue!60!black} \tikzstyle{vector}=[->,thick,veccol] \def\R{1.4} \def\r{0.03} \def\N{9} %\bm{\odot}%otimes \def\RC{0.14} \def\Cout{ \tikz[baseline=-2.5]{ \draw[line width=0.7,myblue] (0,0) circle (\RC); \fill[myblue] (0,0) circle (0.028); } } \def\Cin{ \tikz[baseline=-2.5]{ \draw[line width=0.7,myblue] (0,0) circle (\RC) (-135:0.75*\RC) -- (45:0.75*\RC) (135:0.75*\RC) -- (-45:0.75*\RC); } } \def\null{\color{myblue}{0}} \begin{document} % ZERO - solenoid \begin{tikzpicture} \def\ang{60} \def\N{6} \fill[myblue] (0,0) circle (\r); %\foreach \x/\y in {-1/0,-1/1,0/1,1/1,1/0,-1/-1,0/-1,1/-1}{ % \draw[vector] (\x*0.5*\R,\y*0.5*\R) --++ (-\y*0.2*\R,\x*0.2*\R); %} \foreach \R in {0.44,0.88}{ \foreach \i [evaluate={\ang=\i*360/\N;}] in {1,...,\N}{ \draw[vector] (\ang:\R) --++ (\ang+90:\R); } } %\foreach \i [evaluate={\ang=\i*360/\N;}] in {1,...,\N}{ % \draw[vector] (\x*0.5*\R,\y*0.5*\R) ++ (\ang-180:\R/2) --++ (\ang:\R); %} \node at (0,-1.3*\R) {$\curl{{\color{veccol}\vb{v}}} = \Cout$}; \end{tikzpicture} % RADIAL OUTWARD \begin{tikzpicture} \fill[myblue] (0,0) circle (\r); \foreach \i [evaluate={\ang=\i*360/\N;}] in {0,...,\N}{ \draw[vector] (\ang:0.1*\R) --++ (\ang:\R); } \node at (0,-1.35*\R) {$\curl{{\color{veccol}\vb{v}}} = \null$}; \end{tikzpicture} % RADIAL INWARD \begin{tikzpicture} \fill[myblue] (0,0) circle (\r); \foreach \i [evaluate={\ang=\i*360/\N;}] in {0,...,\N}{ \draw[vector] (\ang:1.1*\R) -- (\ang:0.1*\R); } \node at (0,-1.35*\R) {$\curl{{\color{veccol}\vb{v}}} = \null$}; \end{tikzpicture} % ZERO \begin{tikzpicture} \def\ang{60} \fill[myblue] (0,0) circle (\r); \foreach \x/\y in {-1/0,-1/1,0/1,1/1,1/0,-1/-1,0/-1,1/-1}{ \draw[vector] (\x*0.5*\R,\y*0.5*\R) ++ (\ang-180:\R/2) --++ (\ang:\R); } \node at (0,-1.35*\R) {$\curl{{\color{veccol}\vb{v}}} = \null$}; \end{tikzpicture} % ZERO \begin{tikzpicture} \def\ang{60} \def\Ny{4} \def\Nx{4} \def\L{2.5} \fill[myblue] (0,0) circle (\r); \foreach \i [evaluate={\y=(\i-0.5)*(\L/2)/(\Ny-0.5); \r=0.3*\i^(0.7)}] in {1,...,\Ny}{ \foreach \j [evaluate={\x=-\L/2+(\j-1.5)*\L/(\Nx-1);}] in {1,...,\Nx}{ \draw[vector] ( \x, \y) --++ ( \r,0); \draw[vector] (-\x,-\y) --++ (-\r,0); } } \node at (0,-1.35*\R) {$\curl{{\color{veccol}\vb{v}}} = \Cin$}; \end{tikzpicture} \end{document}
Click to download: curl.tex • curl.pdf
Open in Overleaf: curl.tex