The basics of the centripetal force in uniform circular motion, including a mass suspended from a string.
More on uniform circular motion here. For more related figures, please see the “forces” and “Newton’s laws” tag.
Edit and compile if you like:
% Author: Izaak Neutelings (October 2020) % Inspiration: https://tex.stackexchange.com/questions/25531/adding-underbrace-in-tikz \documentclass[border=3pt,tikz]{standalone} \usepackage{physics} \usepackage{siunitx} \usepackage{ifthen} \usepackage{tikz} %\usepackage[outline]{contour} % glow around text \usetikzlibrary{calc} \usetikzlibrary{angles,quotes} % for pic \usetikzlibrary{patterns} \tikzset{>=latex} % for LaTeX arrow head %\contourlength{1.4pt} \colorlet{xcol}{blue!70!black} \colorlet{vcol}{green!70!black} \colorlet{myred}{red!65!black} \colorlet{acol}{red!50!blue!80!black!80} \tikzstyle{ground}=[preaction={fill,top color=black!10,bottom color=black!5,shading angle=20}, fill,pattern=north east lines,draw=none,minimum width=0.3,minimum height=0.6] \tikzstyle{metal}=[fill,top color=black!40,bottom color=black!20,shading angle=10] \tikzstyle{mass}=[line width=0.6,red!30!black,fill=red!40!black!10,rounded corners=1, top color=red!40!black!20,bottom color=red!40!black!10,shading angle=20] \tikzstyle{rope}=[brown!70!black,very thick,line cap=round] \def\rope#1{ \draw[black,line width=1.5] #1; \draw[rope] #1; } % FORCES SWITCH \tikzstyle{force}=[->,myred,very thick,line cap=round] \tikzstyle{Fproj}=[force,myred!40] \newcommand{\vbF}{\vb{F}} \newcommand{\vbT}{\vb{T}} \begin{document} % CIRCULAR MOTION - 2D \begin{tikzpicture} \def\R{1.6} % string length \def\r{0.18} % ball radius \def\Ry{0.5} % small radius of the ellipse \def\F{0.9} % force size \coordinate (O) at (0,0); \coordinate (M) at (\R,0); \coordinate (F0) at ($(M)+(104:0.8*\r)$); \coordinate (F) at ($(F0)+(90:\F)$); \draw[very thin,xcol] (O) circle (\R); \draw[->,dashed] (O) -- (70:\R) node[midway,above left=-2] {$r$}; \draw[thick,line cap=round] (O) -- (\R,0); %node[midway,above left=-2] {$r$}; \draw[thin,mass] (M) circle (\r) node[right=5] {$m$}; \draw[force] (M)++(140:0.7*\r) --++ (-\F,0) node[below=1,above left=-4] {$\vb{F}_\mathrm{c}$}; \draw[force,acol] (M)++(-140:0.7*\r) --++ (-0.8*\F,0) node[below left=-3] {$\vb{a}$}; \draw[force,vcol] (M)++(90:0.8*\r) --++ (0,0.9*\F) node[right=0] {$\vb{v}$}; \draw[->,vcol!50!black] (15:0.9*\R) arc(15:40:0.85*\R) node[above left=-3] {$\omega$}; \end{tikzpicture} % CIRCULAR MOTION string \begin{tikzpicture} \def\L{2.8} % string length \def\r{0.18} % ball radius \def\Ry{0.5} % small radius of the ellipse \def\ang{35} % angle \def\F{1.2} % force size %\def\dang{17} % angle offset \coordinate (O) at (0,0); \coordinate (T) at (0,{\L*cos(\ang)}); \coordinate (M) at ({\L*sin(\ang)},0); \coordinate (F0) at ($(M)+(104:0.8*\r)$); \coordinate (F) at ($(F0)+(90+\ang:\F)$); %\coordinate (Fy) at ($(F0)+(90:{\F*cos(\ang)})$); %\coordinate (Fx) at ($(F0)+(180:{\F*sin(\ang)})$); % STRING + MASS \draw[very thin,xcol] (M) arc (0:180:{\L*sin(\ang)} and \Ry); \draw[dashed] (T) -- (O) node[midway,left=-1] {$h$} -- (0,-0.1*\L); \draw[dashed] (M) -- (O) node[midway,below=-1] {$r$} -- (-0.1*\L,0); \draw[thin,mass] (M) circle (\r) node[right=5] {$m$}; \draw[thick,line cap=round] (T) --++ (\ang-90:\L-0.9*\r) node[midway,left=1,below=1] {$L$}; %\draw[thin,xcol] (O) ellipse ({\L*sin(\ang)} and \Ry); %\draw[very thin,xcol] (\dang:{\L*sin(\ang)} and \Ry) arc (\dang:358:{\L*sin(\ang)} and \Ry); \draw pic["$\theta$",xcol,draw=xcol,angle radius=14,angle eccentricity=1.45] {angle=O--T--M}; % FORCES \draw[<->] (M)++(75:8*\r) node[left=-2,scale=0.9] {$x$} -|++ (3*\r,3*\r) node[below=4,right=0,scale=0.9] {$y$}; %\draw[dashed,myred!80!black!60] (Fx) -- (F) -- (Fy); %\draw[force] (F0) -- (F) node[above=3,right=-1] {\contour{white}{$\vbT$}}; \draw[force] (F0) -- (F) node[below=2,right=4] {$\vbT$}; %\draw[Fproj] (F0) -- (Fy) node[below=2,right=0] {$\vbT_y$}; %\draw[Fproj] (F0) -- (Fx) node[above=2,left=-3] {$\vbT_x$}; \draw[force] (M)++(0,-0.2*\r) --++ (-90:{\F*cos(\ang)}) node[midway,right=0] {$-mg\vu{y}$}; %\draw[force,acol] (M) --++ (180:{\F*sin(\ang)}) node[midway,below=0] {$m\vb{a}$}; \draw[force,acol] (M)++(160:0.9*\r) --++ (180:{\F*sin(\ang)}) node[above=4,left=-3] {$m\vb{a}$}; %\draw pic["$\theta$",xcol,draw=xcol,angle radius=14,angle eccentricity=1.45] {angle=Fy--F0--F}; %\draw pic["$\theta_3$",xcol,draw=xcol,angle radius=13,angle eccentricity=1.40] {angle=F3--O--T}; \draw[very thin,xcol] (170:{\L*sin(\ang)} and \Ry) arc (170:357:{\L*sin(\ang)} and \Ry); \end{tikzpicture} % CIRCULAR MOTION - force balance \begin{tikzpicture} \def\ang{35} % angle \def\F{1.6} % force size \def\r{0.18} % ball radius \coordinate (O) at (0,0); \coordinate (F) at (90+\ang:\F); \coordinate (Fy) at (90:{\F*cos(\ang)}); \coordinate (Fx) at (180:{\F*sin(\ang)}); \draw[thin,mass] (O) circle (\r) node[right=5] {$m$}; \draw[dashed,myred!80!black!60] (Fx) -- (F) -- (Fy); \draw[Fproj] (O) -- (Fy) node[below=2,right=0] {$\vbT_y$}; \draw[Fproj] (O) -- (Fx) node[above=2,left=-2] {$\vbT_x$}; \draw[force] (O) -- (F) node[above left=-3] {$\vbT$}; \draw[force] (O) --++ (-90:{\F*cos(\ang)}) node[midway,right=0] {$-mg\vu{y}$}; \draw[force,acol] (O)++(-130:1.6*\r) --++ (Fx) node[midway,right=2,below=0] {$m\vb{a}$}; \draw pic["$\theta$",xcol,draw=xcol,angle radius=14,angle eccentricity=1.45] {angle=Fy--O--F}; \end{tikzpicture} % CIRCULAR MOTION - force balance - tip to toe (or but?) \begin{tikzpicture} \def\ang{35} % angle \def\F{1.6} % force size \def\r{0.18} % ball radius \coordinate (O) at (0,0); \coordinate (F) at ((90+\ang:\F); \coordinate (Fx) at (180:{\F*sin(\ang)}); \draw[force] (90-\ang:0.02) --++ (F) node[midway,above right=-3] {$\vbT$}; \draw[force] (F) -- (Fx) node[midway,left=0] {$-mg\vu{y}$}; \draw[force,acol] (O) -- (Fx) node[midway,left=1,below=0] {$m\vb{a}$}; \draw pic["$\theta$",xcol,draw=xcol,angle radius=14,angle eccentricity=1.45] {angle=Fx--F--O}; \end{tikzpicture} \end{document}
Click to download: dynamics_circle.tex • dynamics_circle.pdf
Open in Overleaf: dynamics_circle.tex