Some basic shapes that rotate to compute the moment of inertia: single mass point, two connected masses, a ring, a solid disk and a hollow cylinder.
Alternative diagrams are in this post. For more related figures, please see the “angular momentum” or “torque” tags.
Edit and compile if you like:
% Author: Izaak Neutelings (October 2020)
\documentclass[border=3pt,tikz]{standalone}
\usepackage{physics}
\usepackage{tikz}
\usepackage[outline]{contour} % glow around text
\usetikzlibrary{calc}
\usetikzlibrary{angles,quotes} % for pic
\usetikzlibrary{arrows.meta}
\usetikzlibrary{patterns}
\tikzset{>=latex} % for LaTeX arrow head
\contourlength{1.35pt}
\colorlet{xcol}{blue!70!black}
\colorlet{vcol}{green!60!black}
\colorlet{myred}{red!65!black}
\colorlet{mydarkred}{red!40!black}
\colorlet{mypurple}{blue!60!red!80}
\colorlet{mydarkgreen}{green!20!black}
\colorlet{acol}{red!50!blue!80!black!80}
\tikzstyle{rvec}=[->,xcol,very thick,line cap=round]
\tikzstyle{vvec}=[->,vcol,very thick,line cap=round]
\tikzstyle{myarr}=[{Latex[length=3,width=3]}-,xcol]
\tikzstyle{myarr2}=[{Latex[length=2,width=2.5]}-{Latex[length=2,width=2.5]}]
\tikzstyle{force}=[->,myred,very thick,line cap=round]
\tikzstyle{Fproj}=[force,myred!40]
\tikzstyle{CM}=[mydarkred,fill=red!80!black!80]
\tikzstyle{mass}=[line width=0.6,draw=red!30!black, %rounded corners=1,
top color=mydarkred!30,bottom color=mydarkred!10,shading angle=30]
\tikzstyle{dark mass}=[line width=0.3,red!30!black, %rounded corners=1,
top color=mydarkred!40,bottom color=mydarkred!60,shading angle=30]
\tikzstyle{ground}=[preaction={fill,top color=black!10,bottom color=black!5,shading angle=20},
fill,pattern=north east lines,draw=none,minimum width=0.3,minimum height=0.6]
\tikzstyle{metal}=[fill,top color=black!40,bottom color=black!20,shading angle=10]
\tikzstyle{pulcol}=[draw=blue!30!black,%fill=blue!40!black!10
top color=blue!40!black!20,bottom color=blue!40!black!10,shading angle=20]
\tikzstyle{rope}=[brown!70!black,very thick,line cap=round]
\def\rope#1{ \draw[black,line width=1.5] #1; \draw[rope] #1; }
\tikzstyle{mount}=[blue!20!black,fill,top color=blue!20!black!70,bottom color=blue!20!black!40,shading angle=10]
\def\r{0.05} % pulley small radius
\tikzset{
pics/Tin/.style={
code={
\def\R{0.12}
\draw[pic actions,line width=0.6,#1,fill=white] % ,thick
(0,0) circle (\R) (-135:.75*\R) -- (45:.75*\R) (-45:.75*\R) -- (135:.75*\R);
}},
pics/Tout/.style={
code={
\def\R{0.12}
\draw[pic actions,line width=0.6,#1,fill=white] (0,0) circle (\R);
\fill[pic actions,#1] (0,0) circle (0.3*\R);
}},
pics/rotarr/.style={
code={
\draw[white,very thick] ({#1*cos(200)},0) arc(-200:30:{#1} and {#1/2}) --++ (125:0.1);
\draw[->,mydarkgreen] ({#1*cos(200)},0) coordinate (W1) arc(-200:20:{#1} and {#1/2}) node[midway] (W2) {} --++ (125:0.1) coordinate (W3);
}},
pics/pulley/.style={
code={
\draw[pulcol,line width=0.6] (0,0) circle (#1);
\draw[pulcol,thick] (0,0) circle (\r);
}},
pics/mount/.style args={#1:#2}{ % angle, length
code={
\draw [mount] (0,0)++(#1-90:0.9*\r) arc (#1-90:#1-270:0.9*\r) --++ (#1:#2) --++ (#1-90:1.8*\r) -- cycle;
}
},
pics/Tin/.default=mypurple,
pics/Tout/.default=mypurple,
pics/rotarr/.default=0.4,
pics/pulley/.default=0.3,
}
\newcommand\rightAngle[4]{
\pgfmathanglebetweenpoints{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}
\coordinate (tmpRA) at ($(#2)+(\pgfmathresult+45:#4)$);
\draw[white,line width=0.7] ($(#2)!(tmpRA)!(#1)$) -- (tmpRA) -- ($(#2)!(tmpRA)!(#3)$);
\draw[xcol!30!black] ($(#2)!(tmpRA)!(#1)$) -- (tmpRA) -- ($(#2)!(tmpRA)!(#3)$);
}
\begin{document}
% MOMENT OF INERTIA - mass in circle
\begin{tikzpicture}
\def\R{1.9} % circle radius
\def\r{1.4} % mass radius (inner sep)
\def\F{1.6} % force magnitude
\def\ang{40} % mass anglular position
\def\Fang{50} % force angle w.r.t. position vector
\coordinate (O) at (0,0);
\coordinate (R) at (\ang:\R);
\coordinate (F) at ($(R)+(\ang+\Fang:\F)$);
\coordinate (FT) at ($(R)+(\ang+90:{\F*sin(\Fang)})$); % perpendicular to position vector
\coordinate (T) at ($(R)+(\ang-50:0.25*\R)$); % torque
\coordinate (RT) at ($(R)+(\ang+\Fang-180:{\R*sin(\ang)})$);
\draw[xcol] (O) circle(\R);
\draw[dashed] (R) --++ (\ang:0.7*\R) coordinate (E);
\draw[dashed] (F) -- (FT);
\draw[dashed] (F) -- (RT) --++ (\ang+\Fang-180:0.16*\R);
\draw[force] (R) -- (F) node[midway,above right=0] {$\vb{F}$};
%\draw[Fproj] ([yshift=2.3,xshift=2.4]R) -- ([yshift=2.2,xshift=2.4]FT) node[above left=-4] {$\vb{F}_\mathrm{T}$};
\draw[Fproj] (R) -- (FT) node[above left=-4] {$\vb{F}_\mathrm{t}$};
%\draw[vvec] ([yshift=0]R) --++ (\ang+90:0.6*\F) node[below=1,left=-4] {$\vb{v}$};
\node[mass,circle,inner sep=\r] (R') at (R) {$m$};
\draw[rvec,xcol!90!black!50] (O) -- (RT) node[midway,below] {$\vb{r}_\mathrm{t}$};
\draw[rvec] (O) -- (R') node[midway,above left=-2] {$\vb{r}$};
\draw pic["$\theta$",draw,angle radius=13,angle eccentricity=1.4] {angle=E--R--F};
\draw pic["$\theta$",draw,angle radius=11,angle eccentricity=1.5] {angle=FT--F--R};
\rightAngle{O}{RT}{R}{0.38}
\rightAngle{F}{FT}{R}{0.38}
\pic[scale=1] at (T) {Tout};
\node[mypurple,right=2] at (T) {$\vb*\tau$};
\end{tikzpicture}
% MOMENT OF INERTIA - masses on rods
\begin{tikzpicture}
\def\R{1.9} % circle radius
\def\r{1.4} % mass radius (inner sep)
\def\ang{40} % mass anglular position
\coordinate (O) at (0,0);
\coordinate (L) at (-\R/2,0);
\coordinate (R) at ( \R/2,0);
\draw[dashed] (0,-0.5*\R) -- (0,0.55*\R) coordinate (T);
\pic[scale=1] at ($(T)+(0,-0.1*\R)$) {rotarr};
%\node[mydarkgreen,below right=1] at (W3) {$\omega$};
\draw[line width=1.8,red!25!black] (L) -- (R);
\node[mass,circle,inner sep=\r] (L') at (L) {$m$};
\node[mass,circle,inner sep=\r] (R') at (R) {$m$};
\draw[<->] (L)++(0,-0.2*\R) --++ ( \R/2,0) node[midway,fill=white,inner sep=1] {$r$}; %\frac{r}{2}
\draw[<->] (R)++(0,-0.2*\R) --++ (-\R/2,0) node[midway,fill=white,inner sep=1] {$r$};
\end{tikzpicture}
% MOMENT OF INERTIA - masses on rods - shifted
\begin{tikzpicture}
\def\R{1.9} % circle radius
\def\r{1.4} % mass radius (inner sep)
\def\ang{40} % mass anglular position
\coordinate (O) at (0,0);
\coordinate (L) at (-\R/2,0);
\coordinate (R) at ( \R/2,0);
\draw[dashed] (-\R/2,-0.5*\R) --++ (0,1.05*\R) coordinate (T);
\pic[scale=1] at ($(T)+(0,-0.1*\R)$) {rotarr};
%\node[mydarkgreen,below right=1] at (W3) {$\omega$};
\draw[line width=1.8,red!25!black] (L) -- (R);
\node[mass,circle,inner sep=\r] (L') at (L) {$m$};
\node[mass,circle,inner sep=\r] (R') at (R) {$m$};
\draw[<->] (L)++(0,-0.2*\R) --++ (\R,0) node[midway,fill=white,inner sep=1] {$r$};
\end{tikzpicture}
% MOMENT OF INERTIA - masses on rods
\begin{tikzpicture}
\def\R{1.9} % circle radius
\def\r{1.4} % mass radius (inner sep)
\def\ang{40} % mass anglular position
\coordinate (O) at (0,0);
\coordinate (L) at (-\R/2,0);
\coordinate (R) at ( \R/2,0);
\draw[dashed] (-0.9*\R,0) -- (0.9*\R,0) coordinate (T);
\pic[scale=1,rotate=90] at ($(T)+(-0.2*\R,0)$) {rotarr};
%\node[mydarkgreen,above=10,right=-1] at (W2) {$\omega$};
\draw[line width=1.8,red!25!black] (L) -- (R);
\node[mass,circle,inner sep=\r] (L') at (L) {$m$};
\node[mass,circle,inner sep=\r] (R') at (R) {$m$};
\end{tikzpicture}
% MOMENT OF INERTIA - RING 2D
\begin{tikzpicture}
\def\R{1.4}
\def\dr{0.15}
\def\ang{40}
\def\angdr{14}
\coordinate (O) at (0,0);
\coordinate (R) at (\ang:\R+\dr/2);
\draw[mass,even odd rule]
(O) circle(\R) circle(\R+\dr);
\draw[dark mass]
(\ang:\R) arc(\ang:\ang+\angdr/2:\R) --++ (\ang+\angdr/2:\dr)
arc(\ang+\angdr/2:\ang-\angdr/2:\R+\dr)
node[midway,above=1,right=1] {$\dd{m}$} --++ (\ang-\angdr/2-180:\dr)
arc(\ang-\angdr/2:\ang:\R);
\draw[rvec] (O) -- (R) node[midway,above left=-2] {$\vb{r}$};
\draw[->] (O) -- (-20:\R+\dr/2) node[midway,fill=white,inner sep=1] {$R$};
\end{tikzpicture}
% MOMENT OF INERTIA - RING 3D
\def\Rx{1.6} % horizontal radius
\def\Ry{0.8} % vertical radius
\def\sx{0.90} % inner horizontal radius
\def\sy{0.80} % inner vertical radius
\def\ang{-25} % angle figure
\def\angr{20} % vector angle
\def\angdr{28} % infinitesimal arc segment angle (dtheta)
\begin{tikzpicture}[rotate=\ang]
\coordinate (O) at (0,0);
\coordinate (R1) at (\angr+4:{1.05*\sx*\Rx} and {1.05*\sy*\Ry});
\coordinate (R2) at (\angr+3+\angdr:{1.08*\sx*\Rx} and {1.08*\sy*\Ry});
\draw[thick,line cap=round] (0,0.9*\Ry) -- (0,-1.6*\Ry);
\draw[line width=0.5,draw=red!30!black,even odd rule,
top color=mydarkred!30,bottom color=mydarkred!30,middle color=mydarkred!20,shading angle=30]
(O) ellipse({\Rx} and \Ry) ellipse({\sx*\Rx} and \sy*\Ry);
\draw[->,thick,line cap=round] (O) --++ (0,2.5*\Ry) node[left] {$z$};
\pic[xscale=1,rotate=\ang] at (0,2.0*\Ry) {rotarr={0.3}}; % rotation arrow
%\node[mydarkgreen,right=0] at (W3) {$\omega$};
\draw[dark mass] % infinitesimal line segment (ds = R.dtheta, dm)
(\angr:{\sx*\Rx} and {\sy*\Ry}) to[out=90,in=100] (\angr:{\Rx} and {\Ry})
arc(\angr:\angr+\angdr:{\Rx} and {\Ry})
to[out=160,in=90] (\angr+\angdr:{\sx*\Rx} and {\sy*\Ry})
arc(\angr+\angdr:\angr:{\sx*\Rx} and {\sy*\Ry});
\draw[dashed] (R2) -- (O)
node[pos=0.6,above=-1,scale=1] {$R$};
\draw[-{Latex[length=3,width=2]}]
(\angr:{0.5*\Rx} and {0.5*\Ry}) arc(\angr:\angr+\angdr:{0.5*\Rx} and {0.5*\Ry})
node[pos=0.55,right=-0.9,scale=0.8] {$\dd{\theta}$};
\draw[myarr2] % line segment length s = R.dtheta
(\angr+2:{1.06*\Rx} and {1.06*\Ry})
node[above=2,below right=-3,red!30!black] {$\dd{m}$}
arc(\angr+2:\angr+\angdr:{1.06*\Rx} and {1.06*\Ry})
node[pos=0.7,right=0] {$R\dd{\theta}$};
\draw[rvec] (O) -- (R1) % vector r
node[pos=0.55,below=0,scale=0.9] {$\vb{r}$};
\end{tikzpicture}
% MOMENT OF INERTIA - RING 3D - parallel axis / Steiner's theorem
\begin{tikzpicture}[rotate=\ang]
\def\Rxx{0.5*(1+\sx)*\Rx}
\coordinate (O) at (0,0);
\draw[line cap=round] (0,0.9*\Ry) -- (0,-1.6*\Ry) node[above left=-1] {$I_\text{cm}$};
\draw[line cap=round] ({\Rxx},0.9*\Ry) -- ({\Rxx},-1.3*\Ry) node[above=4,right=2] {$I$};
\draw[CM] (O) circle(0.06) node[above left=-1,scale=0.9] {CM};
\draw[line width=0.5,draw=red!30!black,even odd rule,
top color=mydarkred!30,bottom color=mydarkred!30,middle color=mydarkred!20,shading angle=30]
(O) ellipse({\Rx} and \Ry) ellipse({\sx*\Rx} and \sy*\Ry);
\draw[line cap=round] (0,0.05) --++ (0,2.5*\Ry); %node[left] {$z$};
\fill[red!80!black] ({\Rxx},0.04) circle(0.02);
\draw[line cap=round] ({\Rxx},0.05) --++ (0,2.5*\Ry); %node[left] {$z$};
\pic[rotate=\ang] at ({\Rxx},2.0*\Ry) {rotarr={0.3}}; % rotation arrow
%\node[mydarkgreen,right=0] at (W3) {$\omega$};
\draw[<->] (0,1.38*\Ry) --++ ({\Rxx},0) % distance/radius R
node[pos=0.5] {\contour{white}{$R$}};
\end{tikzpicture}
% MOMENT OF INERTIA - DISK
\begin{tikzpicture}
\def\R{1.6}
\def\r{1.1}
\def\dr{0.2}
\def\t{0.15} % disk thickness
\def\angp{35} % perspective
\def\angdr{20}
\coordinate (O) at (0,0);
\coordinate (R) at (50:\r);
\coordinate (DR1) at (\angdr:\r);
\coordinate (DR2) at (\angdr:\r+\dr);
\draw[thick] (0,0) --++ (\angp:1.4*\R);
\draw[mass,
top color=mydarkred!50,bottom color=mydarkred!50,middle color=mydarkred!10,shading angle=\angp]
(\angp+90:\R) --++ (\angp:\t) arc(\angp+90:\angp-90:\R) --++ (\angp-180:\t) arc(\angp-90:\angp-270:\R);
\draw[mass]
(O) circle(\R);
\draw[dark mass,even odd rule]
(O) circle(\r+\dr) circle(\r);
\draw[->] (O) -- (-30:\R) node[midway] {\contour{mydarkred!15}{$R$}}; %,fill=mydarkred!13,inner sep=1
\draw[rvec] (O) -- (R) node[midway,above left=-2] {$\vb{r}$};
\draw[->,thick] (0,0) -- (\angp-180:1.45*\R) node[left] {$z$};
\draw[myarr] (DR1) node[below=3,right=-3,scale=0.9]
{\contour{mydarkred!15}{$\dd{r}$}} --++ (\angdr-180:1.1*\dr);
\draw[myarr] (DR2) --++ (\angdr:1.1*\dr);
\pic[xscale=1.5,rotate=90] at (\angp-180:1.35*\R) {rotarr};
%\node[left=-1] at (W3) {$\omega$};
\end{tikzpicture}
% MOMENT OF INERTIA - HOLLOW CYLINDER
\begin{tikzpicture}
\Large
\def\L{3.0} % cylinder length
\def\R{1.4}
\def\dr{0.15}
\def\ang{8}
\def\angp{40} % perspective
\def\angdr{14}
\coordinate (O) at (0,0);
\coordinate (R) at (\ang:\R);
\draw[thick] (\angp:\L) --++ (\angp:1.5*\R);
\draw[mass,
top color=mydarkred!50,bottom color=mydarkred!50,middle color=mydarkred!10,shading angle=\angp]
(\angp+90:\R+\dr) --++ (\angp:\L) arc(\angp+90:\angp-90:\R+\dr) --++ (\angp-180:\L) arc(\angp-90:\angp-270:\R+\dr);
\draw[mass,even odd rule]
(O) circle(\R) circle(\R+\dr);
%\draw[dashed,thick] (\angp:0.98*\R) -- (\angp-180:1.7*\R);
\draw[->,thick] (\angp:\R-0.01) -- (\angp-180:1.7*\R) node[left] {$z$};
\draw[dark mass]
(\ang:\R+\dr)++(\angp:0.25*\L) coordinate (DM1)
arc(\ang:\ang+\angdr:\R+\dr) node[above left=-3] {$\dd{m}$}
--++ (\angp-180:0.1*\L) arc(\ang+\angdr:\ang:\R+\dr) -- cycle;
\draw[myarr2] (DM1)++(-70:0.08) --++ (\angp-180:0.1*\L)
node[midway,below right=-3,scale=0.9] {$\dd{z}$};
\draw[myarr2] (DM1)++(20:0.08) arc(\ang:\ang+\angdr:\R+\dr)
node[midway,above=2,right=-1,scale=0.9] {$r\dd{\theta}$};
%\draw[rvec] (O) -- (R) node[midway,right=3,above=-1] {$\vb{r}$};
\draw[->] (O) -- (-40:\R+\dr/2) node[midway] {\contour{mydarkred!20}{$R$}};
\pic[xscale=1.5,rotate=90] at (\angp-180:1.5*\R) {rotarr};
%\node[left=-1] at (W3) {$\omega$};
\end{tikzpicture}
% DISK - PULLEY - MASS
\begin{tikzpicture}
\def\h{0.6} % mass height
\def\w{0.5} % mass width
\def\W{4.1} % ground width
\def\H{3.2} % ground height
\def\D{0.3} % ground depth
\def\L{0.7} % rope length
\def\t{0.1} % peg thickness
\def\R{0.40} % pulley radius
\def\RD{1.2} % disk radius
\def\px{2*\RD+\R} % pulley x position
\def\py{0.85*\H} % pulley y position
\def\my{0.60*\H} % mass y position
\coordinate (O) at (\RD,0); % disk origin
\coordinate (TD) at (2*\RD,0); % tension force on the disk
\coordinate (P) at (\px,\py); % pulley
\coordinate (M) at (\px+\R,\my); % mass
\node[inner sep=2] (TD') at (TD) {};
% ROPE + PULLEY
\rope{(2*\RD,0) arc(0:360:\RD)}
\rope{(\RD,-\RD) arc(-90:0:\RD) -- (\px-\R,\py) arc(180:0:\R) --++ (0,\my-\py)}
\pic at (P) {pulley={\R}};
\pic at (P) {mount={90:\H-\py}};
\draw[mass] (M)++(-\w/2,0) rectangle++ (\w,-\h) node[midway] {$m$};
\draw[force] (M)++(0.1,0) --++ (0,0.8*\RD) node[right] {$\vb{T}$};
\draw[force] (M)++(0.1,-\h) --++ (0,-0.8*\RD) node[right] {$m\vb{g}$};
% GROUND
\draw[ground] %(0,0) rectangle++ (-\D,\H) (-\D,\H) rectangle++ (\W,\D);
(-0.05*\W,\H) rectangle++ (\W,\D);
\draw (-0.05*\W,\H) --++ (\W,0);
% DISK (FLYWHEEL)
\draw[mass] (O) circle(\RD);
\draw[metal] (O) circle(0.1*\RD); %node[right=2,above left=3] {$M$};
\draw[->] (O) --++ (-60:\RD) node[midway] {\contour{mydarkred!15}{$R$}} node[right=3] {$M$};
\pic[scale=1] at (TD) {Tout};
\node[mypurple,right=2] at (TD) {$\vb*\tau$};
\draw[rvec] (O) -- (TD') node[midway,above] {$\vb{r}$};
\draw[force] (TD')++(50:0.13) --++ (0,0.8*\RD) node[above=2,right=-2] {$\vb{T}$};
\end{tikzpicture}
\end{document}
Click to download: dynamics_moment_of_inertia.tex • dynamics_moment_of_inertia.pdf
Open in Overleaf: dynamics_moment_of_inertia.tex








