Electric field of point charge, charged sphere and charged, spherical conductor using Gauss’s law.
Edit and compile if you like:
% Author: Izaak Neutelings (Februari, 2020) % page 8 https://archive.org/details/StaticAndDynamicElectricity % https://tex.stackexchange.com/questions/56353/extract-x-y-coordinate-of-an-arbitrary-point-on-curve-in-tikz % https://tex.stackexchange.com/questions/412899/tikz-calculate-and-store-the-euclidian-distance-between-two-coordinates \documentclass[border=3pt,tikz]{standalone} \usepackage{amsmath} % for \dfrac \usepackage{bm} \usepackage{physics} \usepackage{tikz,pgfplots} \usepackage[outline]{contour} % glow around text \usetikzlibrary{angles,quotes} % for pic (angle labels) \usetikzlibrary{decorations.markings} \usetikzlibrary{shapes,intersections} % for path name \tikzset{>=latex} % for LaTeX arrow head \contourlength{1.8pt} \usepackage{xcolor} \colorlet{Ecol}{orange!90!black} \colorlet{EcolFL}{orange!80!black} \colorlet{veccol}{green!45!black} \colorlet{EFcol}{red!60!black} \colorlet{pluscol}{red!60!black} \colorlet{minuscol}{blue!60!black} \colorlet{gausscol}{green!50!black!80} \tikzstyle{charged}=[top color=blue!20,bottom color=blue!40,shading angle=10] \tikzstyle{charge+}=[very thin,draw=black,top color=red!80,bottom color=red!80!black,shading angle=-5] \tikzstyle{charge-}=[very thin,draw=black,top color=blue!50,bottom color=blue!70!white!90!black,shading angle=10] \tikzstyle{darkcharged}=[very thin,top color=blue!60,bottom color=blue!80,shading angle=10] \tikzstyle{gauss surf}=[green!40!black,top color=green!2,bottom color=green!80!black!70,shading angle=5,fill opacity=0.6] \tikzstyle{gauss dark}=[green!40!black,fill=green!40!black!70,fill opacity=0.8] \tikzstyle{gauss line}=[green!40!black] \tikzstyle{gauss dashed line}=[green!60!black!80,dashed,line width=0.2] \tikzstyle{vector}=[->,thick,veccol] \tikzstyle{normalvec}=[->,thick,blue!80!black!80] \tikzstyle{EField}=[->,thick,Ecol] \tikzstyle{EField dashed}=[dashed,Ecol,line width=0.6] \tikzset{ EFieldLine/.style={thick,EcolFL,decoration={markings, mark=at position #1 with {\arrow{latex}}}, postaction={decorate}}, EFieldLine/.default=0.5} \tikzstyle{metal}=[top color=black!5,bottom color=black!15,shading angle=30] \tikzstyle{measure}=[fill=green!70!black!8,midway,outer sep=0,inner sep=1] \def\L{2.2} \def\H{2.2} \def\W{0.30} \def\Nx{5} \def\Ny{5} %\pgfdeclareradialshading{myball}{\pgfpoint{0.5cm}{0cm}}% % {rgb(0cm)=(1,1,1); rgb(0.7cm)=(0.7,0.1,0); rgb(1cm)=(0.5,0.05,0); rgb(1.05cm)=(1,1,1)} \begin{document} % POINT CHARGE +1 \begin{tikzpicture} \def\N{7} \def\R{2.2} \def\r{0.8} % SPHERE BACK \begin{scope} \clip (-\R,0) rectangle ++(2*\R,\R); \draw[gauss line,very thin,dashed] (0,0) ellipse ({\R} and {\r}); \end{scope} % CHARGES \node[charge+,scale=0.8,circle,inner sep=0.27] (C) at (0,0) {$+Q$}; % FIELD LINES \path[name path=ell](0,0) ellipse ({0.78*\R} and {\R}); \foreach \i [evaluate={\ang=-8+\i*360/\N;}] in {1,...,\N}{ %\message{Eline\i^^J} \draw[EFieldLine,name path global/.expanded=Eline\i] (C) -- ({1.2*\R*cos(\ang)},{1.3*\R*sin(\ang)}) coordinate (E\i); %(\ang:1.3*\R) } % SPHERE \draw[gauss line,ball color=green!70!black,fill opacity=0.1] (0,0) circle (\R); \begin{scope} \clip (-\R,0) rectangle ++(2*\R,-\R); \draw[gauss line,very thin] (0,0) ellipse ({\R} and {0.3*\R}); \end{scope} \draw[<->,gauss line,very thin] (C) -- (190:{\R} and {\r}) node[measure] {$R$}; %{\contour{green!70!black!7}{$R$}}; % VECTOR \draw[gauss dark,name intersections={of={Eline1} and ell,name=ES1}] (ES1-1) ++ (-0.081*\R,0.033*\R) to[out=20,in=180] ++(10:0.09*\R) to[out=-35,in=115] ++(-50:0.09*\R) to[out=185,in=15] ++(190:0.09*\R) to[out=120,in=-40] cycle; %node[left] {$\dd{A}$}; \node[green!40!black,right=5,below=2] at (ES1-1) {$\dd{A}$}; \foreach \i [evaluate={\angle=8+\i*360/\Nx;}] in {1,6,7}{ \draw[EField,-,name intersections={of={Eline\i} and ell,name=ES\i}] (ES\i-1) -- (E\i); } \draw[normalvec] (ES1-1) ++ (138:0.03*\R) --++ (50:0.16*\R) node[above=-1] {$\vu{n}$}; \end{tikzpicture} % NO CHARGE \begin{tikzpicture} \def\N{8} \def\R{1.8} \def\E{6.6} \def\r{0.85} %% CHARGES %\node[charge+,scale=0.8,circle,inner sep=0.24] (C) at (0,0) {$+q$}; % FIELD LINES %\path[name path=ell] (0,0) ellipse ({0.78*\R} and {\R}); \foreach \i [evaluate={ \y=0.51*(\i-0.6-\N/2); \ang=3.5*(\i-\N/2); \out=0.8*(\i-\N/2); \in=180+6*(\i-\N/2); \r=2.9*\R-0.14*(\i-\N/2)^2;}] in {1,...,\N}{ \draw[EFieldLine] (-1.4*\R,\y) to[out=\out,in=\in]++ (\ang:\r); %to[out=\out,in=\in] } % SPHERE \draw[gauss line,ball color=green!70!black,fill opacity=0.1] (0,0) circle (\R); % CHARGE \node[right=1] at (-0.1*\R,0) {$Q = 0$}; \node[right=1] at (\R,0) {$\Phi = 0$}; \end{tikzpicture} % SOLID CHARGED SPHERE 3D \begin{tikzpicture} \def\NQ{4} %13} \def\NE{7} \def\R{1.5} \def\r{2.6} \def\dtheta{50} \def\angle{135} \coordinate (P) at (\angle:0.83*\r); % SPHERE \draw[gauss line,ball color=green!70!black,fill opacity=0.3] (0,0) circle (\r); \fill[blue!20] (0,0) circle (\R); \draw[ball color=blue!80,fill opacity=0.3] (0,0) circle (\R); \draw[<->,black,very thin] (0,0) -- (-8:\R) node[pos=0.6,above=-1,black] {$R$}; \draw[vector] (0,0) -- (P) node[pos=0.36,above=1] {$\vb{r}$}; \node at (-60:1.25*\R) {$Q = \rho V$}; % CHARGES \foreach \i [evaluate={\rc=(\i-0.5)*\R/\NQ; \N=-1+4*\i;}] in {1,...,\NQ}{ \foreach \j [evaluate={\ang=48+1*\i+\j*360/\N;}] in {1,...,\N}{ \node[minuscol,scale=0.6] at (\ang:\rc) {$+$}; } } % FIELD LINES \foreach \i [evaluate={\ang=10+\i*360/\NE;}] in {1,...,\NE}{ \draw[EFieldLine=0.4] (\ang:\R) -- (\ang:1.2*\r); } % GAUSS FRONT \draw[gauss line,ball color=green!70!black,fill opacity=0.2] (0,\r) arc (90:270:\r) arc (180+\dtheta:180-\dtheta:{\r/sin(\dtheta)}); % AREA ELEMENT \draw[gauss dark,rotate=40] (P) ++ (\angle:0.015*\r) ellipse (0.2 and 0.1); \draw[->,normalvec] (P) ++ (\angle-70:0.03*\r) --++ (\angle:0.25*\r) node[right=1,above] {$\vu{n}$}; \draw[->,EField] (P) ++ (\angle+70:0.03*\r) --++ (\angle:0.5*\r) node[left=1,above] {$\vb{E}$}; \end{tikzpicture} % SOLID CHARGED SPHERE 2D \begin{tikzpicture} \def\NE{7} \def\NQ{4} \def\R{1.5} \def\r{2.6} % FIELD LINES \foreach \i [evaluate={\ang=-10+\i*360/\NE;}] in {1,...,\NE}{ \draw[EFieldLine] (\ang:\R) -- (\ang:1.17*\r); } % SPHERE \draw[charged] (0,0) circle (\R); \draw[gausscol,thick] (0,0) circle (\r); % CHARGES \foreach \i [evaluate={\rc=(\i-0.5)*\R/\NQ; \N=-1+4*\i;}] in {1,...,\NQ}{ \foreach \j [evaluate={\ang=-8*\i+\j*360/\N;}] in {1,...,\N}{ \node[minuscol,scale=0.7] at (\ang:\rc) {$+$}; } } % VECTORS \node[inner sep=1] (R) at (-40:\R/2) {$R$}; \draw[<-,very thin] (0,0) -- (R); \draw[->,very thin] (R) -- (-40:\R); \node[below=0] at (-85:\R) {$Q = \rho V$}; %fill=white,inner sep=1, \draw[vector] (0,0) -- (54:\r) node[pos=0.46,left=0] {$\vb{r}$}; \draw[EField] (55:\r) --++ (55:0.5*\R) node[left=2] {$\vb{E}$}; \draw[normalvec] (53:\r) --++ (53:0.3*\R) node[right=1] {$\vu{n}$}; \end{tikzpicture} % HOLLOW CHARGED SPHERE 2D \begin{tikzpicture} \def\NE{7} \def\NQ{14} \def\Rin{1.40} \def\Rout{1.60} \def\r{2.6} % FIELD LINES \foreach \i [evaluate={\ang=-10+\i*360/\NE;}] in {1,...,\NE}{ \draw[EFieldLine] (\ang:\Rout) -- (\ang:1.17*\r); } % SPHERE \draw[charged,even odd rule] (0,0) circle (\Rin) circle (\Rout); \draw[gausscol,thick] (0,0) circle (\r); % CHARGES \foreach \i [evaluate={\ang=-6+\i*360/\NQ;}] in {1,...,\NQ}{ \node[minuscol,scale=0.8] at (\ang:{(\Rin+\Rout)/2}) {$+$}; } % VECTORS \node[inner sep=1] (R) at (-30:\Rin/2) {$R$}; \draw[<-,very thin] (0,0) -- (R); \draw[->,very thin] (R) -- (-30:\Rin); \node[below=1] at (-85:\Rout) {$Q = \sigma A$}; %fill=white,inner sep=1, \draw[vector] (0,0) -- (54:\r) node[pos=0.48,left=2] {$\vb{r}$}; \draw[EField] (55:\r) --++ (55:0.5*\Rout) node[left=2] {$\vb{E}$}; \draw[normalvec] (53:\r) --++ (53:0.3*\Rout) node[right=1] {$\vu{n}$}; \end{tikzpicture} % CONDUCTOR gaussian surface on outside \begin{tikzpicture} \def\NQ{13} \def\NE{7} \def\R{1.5} \def\r{2.6} \def\dtheta{50} \def\angle{135} \coordinate (P) at (\angle:0.83*\r); % SPHERE \draw[gauss line,ball color=green!70!black,fill opacity=0.3] (0,0) circle (\r); \fill[white] (0,0) circle (\R); \draw[ball color=black!10,fill opacity=0.5] (0,0) circle (\R); \draw[<->,black,very thin] (0,0) -- (-8:\R) node[midway,right=4,above=-1,black] {$R$}; \draw[vector] (0,0) -- (P) node[midway,right=8,above=-3] {$\vb{r}$}; % CHARGES \foreach \i [evaluate={\ang=10+\i*360/\NQ;}] in {1,...,\NQ}{ \node[red!70!black,scale=0.9] at (\ang:0.9*\R) {$+$}; } % FIELD LINES \foreach \i [evaluate={\ang=10+\i*360/\NE;}] in {1,...,\NE}{ \draw[EFieldLine=0.4] (\ang:\R) -- (\ang:1.2*\r); } % GAUSS FRONT \draw[gauss line,ball color=green!70!black,fill opacity=0.2] (0,\r) arc (90:270:\r) arc (180+\dtheta:180-\dtheta:{\r/sin(\dtheta)}); % AREA ELEMENT \draw[gauss dark,rotate=40] (P) ++ (\angle:0.015*\r) ellipse (0.2 and 0.1); \draw[->,normalvec] (P) ++ (\angle-70:0.03*\r) --++ (\angle:0.25*\r) node[right=1,above] {$\vu{n}$}; \draw[->,EField] (P) ++ (\angle+70:0.03*\r) --++ (\angle:0.5*\r) node[left=1,above] {$\vb{E}$}; \end{tikzpicture} % CONDUCTOR gaussian surface on inside \begin{tikzpicture} \def\NQ{13} \def\NE{7} \def\R{1.5} \def\r{1.0} \def\dthetaI{40} \def\dthetaII{50} \def\dthetaIII{15} \def\angle{135} \coordinate (P) at (\angle:0.83*\r); % SPHERE \fill[white] (0,0) circle (\R); \draw[ball color=black!5,fill opacity=0.4] (0,0) circle (\R); % GAUSSIAN SURFACE \draw[top color=black!10,bottom color=black!20,shading angle=45,line width=0.2] (90:\R) arc (90:270:\R) -- (-90:\R) -- cycle; \draw[gauss line,dashed,fill opacity=0.4] (0,0) circle (\r); \draw[gauss line,ball color=green!70!black,fill opacity=0.3] %(0,0) circle (\r); (90-\dthetaIII:\r) arc (90-\dthetaIII:270+\dthetaIII:\r) arc (180+\dthetaI:180-\dthetaI:{\r*cos(\dthetaIII)/sin(\dthetaI)}) -- cycle; % VECTORS \draw[<->,black,very thin] (0,0) -- (-10:\R) node[midway,left=2,below=-1,black] {$R$}; \draw[vector] (0,0) -- (25:\r) node[midway,right=2,above=0] {$\vb{r}$}; % CONDUCTOR FRONT \fill[white] (0,\R) arc (90:270:\R) arc (180+\dthetaII:180-\dthetaII:{\R/sin(\dthetaII)}); \draw[ball color=black!10,fill opacity=0.5] (0,\R) arc (90:270:\R) arc (180+\dthetaII:180-\dthetaII:{\R/sin(\dthetaII)}); \draw[top color=black!10,bottom color=black!20,shading angle=45] (90:\R) arc (180-\dthetaII:180+\dthetaII:{\R/sin(\dthetaII)}) -- (-90:\r) arc (180+\dthetaI:180-\dthetaI:{\r/sin(\dthetaI)}) -- cycle; % CHARGES \foreach \i [evaluate={\ang=0+\i*360/\NQ;}] in {1,...,\NQ}{ \node[red!70!black,scale=0.9] at (\ang:0.9*\R) {$+$}; } % FIELD LINES \foreach \i [evaluate={\ang=10+\i*360/\NE;}] in {1,...,\NE}{ \draw[EFieldLine=0.6] (\ang:\R) -- (\ang:1.7*\R); } \end{tikzpicture} % CONDUCTOR with cavity \begin{tikzpicture} \def\NQout{14} \def\NQin{14} \def\NQsideout{6} \def\NQsidein{6} \def\NE{8} \def\Rin{1.2} \def\Rout{2.0} \def\E{1.4*\Rout} \def\dthetain{40} \def\dthetaout{55} \def\angle{135} %\coordinate (P) at (\angle:0.83*\r); % BACK \draw[top color=black!5,bottom color=black!14,shading angle=45] (0,0) circle (\Rout); \fill[white] (0,0) circle (\Rin); \draw[outer color=black!99,inner color=black!10,fill opacity=0.5] %ball color=white,fill opacity=1] (0,0) circle (\Rin); \node[Ecol,right=-12] at (0,0) {$\vb{E}=0$}; % OUTSIDE FRONT \draw[top color=black!10,bottom color=black!20,shading angle=45] (90:\Rin) arc (180-\dthetain:180+\dthetain:{\Rin/sin(\dthetain)}) -- (-90:\Rout) arc (180+\dthetaout:180-\dthetaout:{\Rout/sin(\dthetaout)}) -- cycle; \fill[white] (90:\Rout) arc (90:270:\Rout) arc (180+\dthetaout:180-\dthetaout:{\Rout/sin(\dthetaout)}); \draw[ball color=white,fill opacity=0.5] (90:\Rout) arc (90:270:\Rout) arc (180+\dthetaout:180-\dthetaout:{\Rout/sin(\dthetaout)}); % CHARGES \foreach \i [evaluate={\ang=0+\i*360/\NQout;}] in {1,...,\NQout}{ \node[red!70!black,scale=0.8] at (\ang:0.94*\Rout) {$+$}; } \foreach \i [evaluate={\ang=(180-\dthetaout)+(\i-0.7)*2.1*\dthetaout/\NQsideout;}] in {1,...,\NQsideout}{ \node[red!70!black,shift={({\Rout/tan(\dthetaout)},0)},scale=0.8] at (\ang:{0.94*\Rout/sin(\dthetaout)}) {$+$}; } \foreach \i [evaluate={\ang=10+\i*360/\NE;}] in {1,...,\NE}{ \draw[EFieldLine=0.5] (\ang:\Rout) -- (\ang:\E); } \end{tikzpicture} % CONDUCTOR with cavity \begin{tikzpicture} \def\NQout{14} \def\NQin{14} \def\NQsideout{6} \def\NQsidein{6} \def\NE{8} \def\Rin{1.2} \def\Rout{2.0} \def\E{1.4*\Rout} \def\dthetain{40} \def\dthetaout{55} \def\angle{135} % BACK \draw[top color=black!5,bottom color=black!14,shading angle=45] (0,0) circle (\Rout); \fill[white] (0,0) circle (\Rin); \draw[outer color=black!99,inner color=black!10,fill opacity=0.5] %ball color=white,fill opacity=1] (0,0) circle (\Rin); % INSIDE CHARGE \node[charge+,scale=0.8,circle,inner sep=0.27] (Q) at (0,0) {$+Q$}; \foreach \i [evaluate={\ang=10+\i*360/\NE;}] in {1,...,\NE}{ \draw[EFieldLine=0.5] (Q) -- (\ang:\Rin); \draw[EFieldLine=0.5] (\ang:\Rout) -- (\ang:\E); } % CHARGES INSIDE \foreach \i [evaluate={\ang=3+\i*360/\NQin;}] in {1,...,\NQin}{ \node[blue!70!black,scale=0.9] at (\ang:1.08*\Rin) {$-$}; } % OUTSIDE FRONT \draw[top color=black!10,bottom color=black!20,shading angle=45] (90:\Rin) arc (180-\dthetain:180+\dthetain:{\Rin/sin(\dthetain)}) -- (-90:\Rout) arc (180+\dthetaout:180-\dthetaout:{\Rout/sin(\dthetaout)}) -- cycle; \fill[white] (90:\Rout) arc (90:270:\Rout) arc (180+\dthetaout:180-\dthetaout:{\Rout/sin(\dthetaout)}); \draw[ball color=white,fill opacity=0.5] (90:\Rout) arc (90:270:\Rout) arc (180+\dthetaout:180-\dthetaout:{\Rout/sin(\dthetaout)}); % CHARGES \foreach \i [evaluate={\ang=0+\i*360/\NQout;}] in {1,...,\NQout}{ \node[red!70!black,scale=0.9] at (\ang:0.94*\Rout) {$+$}; } \foreach \i [evaluate={\ang=(180-\dthetain)+(\i-0.7)*2.15*\dthetain/\NQsidein;}] in {1,...,\NQsidein}{ \node[blue!70!black,shift={({\Rin/tan(\dthetain)},0)},scale=0.9] at (\ang:{1.06*\Rin/sin(\dthetain)}) {$-$}; } \foreach \i [evaluate={\ang=(180-\dthetaout)+(\i-0.7)*2.1*\dthetaout/\NQsideout;}] in {1,...,\NQsideout}{ \node[red!70!black,shift={({\Rout/tan(\dthetaout)},0)},scale=0.9] at (\ang:{0.94*\Rout/sin(\dthetaout)}) {$+$}; } \end{tikzpicture} \end{document}
Click to download: electric_field_sphere.tex • electric_field_sphere.pdf
Open in Overleaf: electric_field_sphere.tex