Different boosted jet regimes of the hadronic top decay.
For more related figures, please see the “jet” tag or the Particle Physics category. The cones are constructed with the tangent methods presented here.
Edit and compile if you like:
% Author: Izaak Neutelings (May 2021)% Description: hadronic top quark jet\documentclass[border=3pt,tikz]{standalone}\usepackage{amsmath}\usepackage{physics}\usepackage{xcolor}\usetikzlibrary{calc}\usetikzlibrary{math} % for \tikzmath\tikzset{>=latex} % for LaTeX arrow head\usetikzlibrary{decorations.pathreplacing} % for curly braces\colorlet{myblue}{blue!70!black}\colorlet{mydarkblue}{blue!40!black}\colorlet{mygreen}{green!40!black}\colorlet{myred}{red!65!black}\tikzstyle{cone}=[thin,blue!50!black,fill=blue!50!black!30] %,fill opacity=0.8\tikzstyle{conebase}=[cone,fill=blue!50!black!50] %,fill opacity=0.8\newcommand\jetcone[5][blue]{{\pgfmathanglebetweenpoints{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}\edef\ang{#4/2} % half-opening angle\edef\e{#5} % ratio a/b ("eccentricity") of cone top\edef\vang{\pgfmathresult} % angle of vector OV\tikzmath{coordinate \C;\C = (#2)-(#3);\x = veclen(\Cx,\Cy)*\e*sin(\ang)^2; % x coordinate P\y = tan(\ang)*(veclen(\Cx,\Cy)-\x); % y coordinate P\a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\ang); % vertical radius\b = veclen(\Cx,\Cy)*tan(\ang)*sqrt(1-\e*sin(\ang)^2); % horizontal radius\angb = acos(sqrt(\e)*sin(\ang)); % angle of P in ellipse}\coordinate (tmpL) at ($(#3)-(\vang:\x pt)+(\vang+90:\y pt)$); % tangency\draw[thin,#1!40!black,rotate=\vang, %,fill=#1!50!black!80top color=#1!50!black!80,bottom color=#1!40!black!80,shading angle=\vang](#3) ellipse({\a pt} and {\b pt});\draw[thin,#1!40!black,rotate=\vang,rounded corners=0.001pt,%fill=#1!80!black!40,top color=#1!90!black!20,bottom color=#1!50!black!50,shading angle=\vang](tmpL) arc(180-\angb:180+\angb:{\a pt} and {\b pt})-- (#2) -- cycle;}}
Click to download: jets_top.tex • jets_top.pdf
Open in Overleaf: jets_top.tex