Edit and compile if you like:
\documentclass{article} % % File name: paraboloid-plane.tex % Description: % A solid bounded by the following surfaces % z = 0 % z = \sqrt{x^{2} + y^{2}} % x^{2} + y^{2} + z^{2} = 1 % is generated. I.e., the intersection of paraboloid and a plane. % % Date of creation: April, 23rd, 2022. % Date of last modification: April, 23rd, 2022. % Author: Efraín Soto Apolinar. % https://www.aprendematematicas.org.mx/author/efrain-soto-apolinar/instructing-courses/ % Terms of use: % According to TikZ.net % https://creativecommons.org/licenses/by-nc-sa/4.0/ % \usepackage{tikz} \usetikzlibrary{patterns} \usepackage{tikz-3dplot} \usetikzlibrary{math} \usepackage[active,tightpage]{preview} \PreviewEnvironment{tikzpicture} \setlength\PreviewBorder{1pt} % \begin{document} % \tdplotsetmaincoords{60}{130} \begin{tikzpicture}[tdplot_main_coords,scale=0.75] \tikzmath{function f(\x) {return \x;};} \pgfmathsetmacro{\zini}{0.5*sqrt(2.0)} \pgfmathsetmacro{\step}{0.01} \pgfmathsetmacro{\zsig}{\zini+\step} \pgfmathsetmacro{\nextz}{\zini+0.5*\step} \pgfmathsetmacro{\sig}{2.0*\step} \pgfmathsetmacro{\tini}{0.5*pi} \pgfmathsetmacro{\tfin}{1.85*pi} \pgfmathsetmacro{\tend}{2.5*pi} %%% Coordinate axis \draw[thick,->] (0,0,0) -- (3.5,0,0) node [below left] {\footnotesize$x$}; \draw[dashed] (0,0,0) -- (-2.5,0,0); \draw[thick,->] (0,0,0) -- (0,3.5,0) node [right] {\footnotesize$y$}; \draw[dashed] (0,0,0) -- (0,-2.5,0); \draw[thick] (0,0,0) -- (0,0,4.0); % Z axis (part under the plane z = 4) % The region of integration \draw[gray,thick,fill=yellow,opacity=0.35] plot[domain=0:6.2832,smooth,variable=\t] ({2.0*cos(\t r)},{2.0*sin(\t r)},{0.0}); % \draw[gray,dash dot dot] (-2,0,0) -- (-2,0,4); \draw[gray,dash dot dot] (0,-2,0) -- (0,-2,4); % The plane: x + y = 2 \coordinate (A) at (2,2,4); \coordinate (B) at (-2,2,4); \coordinate (C) at (-2,-2,4); \coordinate (D) at (2,-2,4); % Curves bounding the solid. \draw[blue,thick,opacity=0.5] plot[domain=-2:2,smooth,variable=\t] ({\t},0,{\t*\t}); \draw[blue,thick,opacity=0.5] plot[domain=-2:2,smooth,variable=\t] (0,{\t},{\t*\t}); \draw[blue,thick,opacity=0.5] plot[domain=0:6.2832,smooth,variable=\t] ({2.0*cos(\t r)},{2.0*sin(\t r)},{4.0}); % The paraboloid (level curves z = constant) \foreach \altura in {\step,\sig,...,4.0}{ \pgfmathparse{sqrt(\altura)} \pgfmathsetmacro{\radio}{\pgfmathresult} \draw[cyan,thick,opacity=0.25] plot[domain=0:6.2832,smooth,variable=\t] ({\radio*cos(\t r)},{\radio*sin(\t r)},{\altura}); } % The plane \draw[white] (C) -- (B) node[red,above,sloped,midway]{$z = 4$}; \fill[pattern color=pink,pattern=north east lines] (A) -- (B) -- (C) -- (D) -- (A); \draw[thick,red] (A) -- (B) -- (C) -- (D) -- (A); % \draw[gray,dash dot dot] (2,0,0) -- (2,0,4); \draw[gray,dash dot dot] (0,2,0) -- (0,2,4); % \node[blue,left] at (1,-1.25,2.5) {$z = x^2 + y^2$}; \draw[thick,->] (0,0,4.0) -- (0,0,4.5) node [above] {\footnotesize$z$}; \end{tikzpicture} \end{document}
Click to download: paraboloid-plane.tex • paraboloid-plane.pdf
Open in Overleaf: paraboloid-plane.tex
See more on the author page of Efraín Soto Apolinar.