Decay of the Z boson to leptons.
Edit and compile if you like:
% Author: Izaak Neutelings (Februari 2023) % Description: Decay of the Z boson to leptons. \documentclass[border=3pt,tikz]{standalone} \usetikzlibrary{calc} \usetikzlibrary{math} % for \tikzmath \usetikzlibrary{arrows.meta} % for arrow size \usetikzlibrary{decorations.pathmorphing} % for snakes \tikzset{>=latex} % for LaTeX arrow head \colorlet{myred}{red!75!black} \colorlet{myblue}{blue!70!black} %\colorlet{mydarkblue}{blue!50!black} \colorlet{mygreen}{green!60!black} \colorlet{myorange}{orange!75!yellow!90!black} \colorlet{isocol}{blue!70!black} % color isolation cone \colorlet{sigcol}{red!90!black} % color isolation cone \tikzstyle{track}=[->,line width=0.6,myred] \tikzstyle{dashed track}=[->,mygreen,line width=0.6,line cap=round, dash pattern=on 2.3 off 2.0] \tikzstyle{part}=[circle,ball color=#1,text=#1!30!black, postaction={fill=#1!77,fill opacity=0.8, draw=#1!60!black!90,thin}] \tikzstyle{mysmallarrow}=[-{Latex[length=4.2,width=3.5]},mygreen,thick] % JET CONE \newcommand\jetcone[6][sigcol]{{ \pgfmathanglebetweenpoints{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}} \pgfmathsetmacro\oang{#4/2} % half-opening angle \edef\e{#5} % ratio a/b ("eccentricity") of cone top \def\tmpL{tmpL-#2-#3} % unique coordinate name \edef\vang{\pgfmathresult} % angle of vector OV \tikzmath{ coordinate \C; \C = (#2)-(#3); % vector OV \x = veclen(\Cx,\Cy)*\e*sin(\oang)^2; % x coordinate P \y = tan(\oang)*(veclen(\Cx,\Cy)-\x); % y coordinate P \a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\oang); % vertical radius \b = veclen(\Cx,\Cy)*tan(\oang)*sqrt(1-\e*sin(\oang)^2); % horizontal radius \angb = acos(sqrt(\e)*sin(\oang)); % angle of P in ellipse } \coordinate (\tmpL) at ($(#3)-(\vang:\x pt)+(\vang+90:\y pt)$); % tangency \draw[thin,#1!50!black,fill=#1!80!black!50,line cap=round,rotate=\vang] % cone back (#2) -- (\tmpL) arc(180-\angb:180+\angb:{\a pt} and {\b pt}) -- (#2); %-- cycle; \draw[thin,#1!50!black,rotate=\vang, % cone inside top color=#1!60!black!60,bottom color=#1!50!black!75,shading angle=\vang] (#3) ellipse({\a pt} and {\b pt}); #6 % extra tracks \draw[thin,#1!50!black,rotate=\vang,fill opacity=0.80, % cone front top color=#1!90!black!20,bottom color=#1!50!black!50,line cap=round,shading angle=\vang] (#2) -- (\tmpL) arc(180-\angb:180+\angb:{\a pt} and {\b pt}) -- (#2); %-- cycle; }} \begin{document} % Z -> mumu \begin{tikzpicture}[ scale=2.4, % set scale for all figures ] % Z BOSON \node[circle,part=myorange,inner sep=1.8pt,scale=1.1] (Z) at (0,0) {\textbf{Z}}; % MUONS \draw[track] (Z) to[bend right=12] (70:1.0) node[anchor=-80,inner sep=0pt] {$\mu$}; %^- \draw[track] (Z) to[bend left=12] (30:1.1) node[anchor=-160,inner sep=1pt] {$\mu$}; %^+ \end{tikzpicture} % TAU JET - THREE PRONG, PI ZERO\small \def\angiso{45} % opening angle of isolation cone (CMS: DR = 0.4 => 0.8*180/pi = 45.8) \def\angsig{12} % opening angle of signal cone (CMS: 0.05 <= DR <= 0.1 => 0.1*180/pi = 11.4) \def\e{0.11} % a/b ratio of ellipse minor and major radii \begin{tikzpicture}[ scale=2.4, % set scale for all figures every node/.style={inner sep=1,circle} %,draw=black!9,very thin} ] % Z BOSON \node[part=myorange,inner sep=1.8pt,scale=1.1] (Z) at (0,0) {\textbf{Z}}; % TAUS \node[part=mygreen,minimum size=8pt,scale=0.7] (T1) at (50:0.3) {}; \node[part=mygreen,minimum size=8pt,scale=0.7] (T2) at (-20:0.3) {}; \node[mygreen!80!black,anchor=-50,inner sep=1pt,scale=0.9] at (T1) {$\tau^+$}; \node[mygreen!80!black,anchor=60,inner sep=1pt,scale=0.9] at (T2) {$\tau^-$}; \draw[mysmallarrow] (Z) -- (T1); \draw[mysmallarrow] (Z) -- (T2); % MUONS \draw[track] (T1) to[out=20,in=-138] ++(32:1.22) node[anchor=-160,inner sep=0pt] {$\mu^+$}; % NEUTRINOS \begin{scope}[dashed track,opacity=0.4,thin] \draw (T1) --++ (80:0.64) node[anchor=-110,inner sep=0pt,scale=0.8] {$\overline{\nu}_\tau$}; \draw (T1) --++ (50:0.84) node[anchor=-150,inner sep=0pt,scale=0.8] {$\nu_\mu$}; \draw (T2) --++ (-29:0.84) node[anchor=160,inner sep=1pt,scale=0.8] {$\nu_\tau$}; \end{scope} % TAUH \begin{scope}[rotate around={-85:(T2)}] \coordinate (T2') at ($(T2)+(0,1pt)$); % isolation cone \coordinate (I) at ($(T2)+(0,0.92)$); % isolation cone \coordinate (S) at ($(T2)+(0,1.00)$); % signal cone \coordinate (T) at ($(T2')+(0,0.02)$); % tau vertex %\jetcone[isocol]{T2'}{I}{\angiso}{\e}{ % isolation cone \jetcone[sigcol]{T2'}{S}{\angsig}{\e}{ % signal cone \draw[dashed track] (T) --++ (92:1.18); %node[anchor=-85+\anang,inner sep=0.5] {$\pi^0$}; \draw[track] (T) to[out=90,in=-55] ++(100:1.18); %node[anchor=-70+\anang,inner sep={2.5*cos(\ang)^2-1.5}] {$\pi^-$}; \draw[track] (T) to[out=93,in=-110] ++(85:1.26); %node[anchor=-110+\anang,inner sep={0.6*sin(\ang)^2}] {$\pi^+$}; \draw[track] (T) to[out=88,in=-117] ++(83:1.11); %node[anchor=-145+\anang,inner sep={0.6*sin(\ang)^2}] {$\pi^+$}; } %} \node[myblue!80!black,anchor=-140,inner sep=0pt] at ($(T2)+(0,1.3)$) {$\tau_\mathrm{h}$}; \end{scope} \end{tikzpicture} \end{document}
Click to download: SM_Z_decay.tex • SM_Z_decay.pdf
Open in Overleaf: SM_Z_decay.tex.