Stereographic projection is a one-to-one mapping between the sphere and the plane which preserves angles.
Latitudinal and longitudinal lines on a sphere are always orthogonal. So, their mapping on the plane will always have a right angle.
For 90 degree polar rotations of the sphere, these mappings will have an axis of symmetry – the mapping of the sphere’s equator.
This lets us to rotate the image about that axis to produce orthogonally intersecting 3D shapes!
We can draw such an image using tikz-3dplot. Python is used for creating a multi-page PDF document, which is finally converted into a GIF file.
Single sample image of the series:
Animated GIF; you may need to click on it for running:
This is an example LaTeX file for a particular value of theta, that you can run yourself here in the browser:
\documentclass[tikz, border=1cm]{standalone} \usepackage{tikz-3dplot} \newcommand{\sphereX}[2]{ % #1 - azimuthal angle % #2 - polar angle cos(#2)*cos(#1) } \newcommand{\sphereY}[2]{ % #1 - azimuthal angle % #2 - polar angle cos(#2)*sin(#1) } \newcommand{\sphereZ}[2]{ % #1 - azimuthal angle % #2 - polar angle sin(#2) } \newcommand{\torusRadius}[1]{ % #1 - projection angle (-sin(#1)/cos(#1)) } \newcommand{\torusCenter}[1]{ % #1 - projection angle (1/cos(#1)) } \newcommand{\variableTheta}{ % this is the projection angle 60 } \begin{document} \tdplotsetmaincoords{60}{130} \begin{tikzpicture}[tdplot_main_coords] % This clips, and adds struts to a rectangle that is the size of a Beamer frame. \clip[tdplot_screen_coords] (-12.8/2,-9.6/2) rectangle (12.8/2,9.6/2); \draw[opacity=0,very thin,tdplot_screen_coords] (-12.8/2,-9.6/2) rectangle (12.8/2,9.6/2); % For every azimuthal angle, we draw the corresponding line of longitude on the torus. % The lines of longitude vary in their polar angles. \foreach \azimuthalAngle in {0,10,...,350}{ \draw[variable=\polarAngle,domain=0:360,smooth] plot ( {\torusRadius{\variableTheta}*\sphereX{\azimuthalAngle}{\polarAngle}+\torusCenter{\variableTheta}*cos(\azimuthalAngle)}, {\torusRadius{\variableTheta}*\sphereY{\azimuthalAngle}{\polarAngle}+\torusCenter{\variableTheta}*sin(\azimuthalAngle)}, {\torusRadius{\variableTheta}*\sphereZ{\azimuthalAngle}{\polarAngle}} ); } % Similarly, for every polar angle on the torus, we draw the corresponding line of latitude. % Latitudinal lines vary in their azimuthal angle. % Note that the paths on the tori have the same equation, and we just vary a different parameter. \foreach \polarAngle in {0,10,...,350}{ \draw[variable=\azimuthalAngle,domain=0:360,smooth] plot ( {\torusRadius{\variableTheta}*\sphereX{\azimuthalAngle}{\polarAngle}+\torusCenter{\variableTheta}*cos(\azimuthalAngle)}, {\torusRadius{\variableTheta}*\sphereY{\azimuthalAngle}{\polarAngle}+\torusCenter{\variableTheta}*sin(\azimuthalAngle)}, {\torusRadius{\variableTheta}*\sphereZ{\azimuthalAngle}{\polarAngle}} ); } % We follow a similar strategy for the sphere. % Here we draw the lines of longitude (which vary in their polar angles) % The radius of the sphere is the distance from the origin to any center of a longitudinal line on the torus. % The Center of the sphere is the radius of the torus. This makes them intersect orthogonally. \foreach \azimuthalAngle in {0,10,...,350}{ \draw[variable=\polarAngle,domain=0:360,smooth] plot ( {\torusCenter{\variableTheta}*\sphereX{\azimuthalAngle}{\polarAngle}}, {\torusCenter{\variableTheta}*\sphereY{\azimuthalAngle}{\polarAngle}}, {\torusRadius{\variableTheta}+\torusCenter{\variableTheta}*\sphereZ{\azimuthalAngle}{\polarAngle}} ); } % And for the latitudinal lines, we vary the azimuthal angle in the same formula. \foreach \polarAngle in {0,10,...,350}{ \draw[variable=\azimuthalAngle,domain=0:360,smooth] plot ( {\torusCenter{\variableTheta}*\sphereX{\azimuthalAngle}{\polarAngle}}, {\torusCenter{\variableTheta}*\sphereY{\azimuthalAngle}{\polarAngle}}, {\torusRadius{\variableTheta}+\torusCenter{\variableTheta}*\sphereZ{\azimuthalAngle}{\polarAngle}} ); } \end{tikzpicture} \end{document}
The source code is at Github (Symmetry_in_Stereographic_Projection_of_90_degree_Rotated_Sphere.py), with MIT License.