Variational autoencoder (VAE) architecture. The earliest type of generative machine learning model. Inspired by https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf.
Edit and compile if you like:
% Variational autoencoder architecture. The earliest type of generative machine learning model. % Inspired by https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf. \documentclass[tikz]{standalone} \usepackage{xstring} \usetikzlibrary{fit,positioning} \newcommand\drawNodes[2]{ % #1 (str): namespace % #2 (list[list[str]]): list of labels to print in the node of each neuron \foreach \neurons [count=\lyrIdx] in #2 { \StrCount{\neurons}{,}[\lyrLength] % use xstring package to save each layer size into \lyrLength macro \foreach \n [count=\nIdx] in \neurons \node[neuron] (#1-\lyrIdx-\nIdx) at (2*\lyrIdx, \lyrLength/2-1.4*\nIdx) {\n}; } } \newcommand\denselyConnectNodes[2]{ % #1 (str): namespace % #2 (list[int]): number of nodes in each layer \foreach \n [count=\lyrIdx, remember=\lyrIdx as \previdx, remember=\n as \prevn] in #2 { \foreach \y in {1,...,\n} { \ifnum \lyrIdx > 1 \foreach \x in {1,...,\prevn} \draw[->] (#1-\previdx-\x) -- (#1-\lyrIdx-\y); \fi } } } \begin{document} \begin{tikzpicture}[ shorten >=1pt, shorten <=1pt, neuron/.style={circle, draw, minimum size=4ex, thick}, legend/.style={font=\large\bfseries}, ] % encoder \drawNodes{encoder}{{{,,,,}, {,,,}, {,,}}} \denselyConnectNodes{encoder}{{5, 4, 3}} % decoder \begin{scope}[xshift=11cm] \drawNodes{decoder}{{{,,}, {,,,}, {,,,,}}} \denselyConnectNodes{decoder}{{3, 4, 5}} \end{scope} % mu, sigma, sample nodes \foreach \idx in {1,...,3} { \coordinate[neuron, right=2 of encoder-3-2, yshift=\idx cm,, fill=yellow, fill opacity=0.2] (mu-\idx); \coordinate[neuron, right=2 of encoder-3-2, yshift=-\idx cm, fill=blue, fill opacity=0.1] (sigma-\idx); \coordinate[neuron, right=4 of encoder-3-2, yshift=\idx cm-2cm, fill=green, fill opacity=0.1] (sample-\idx); } % mu, sigma, sample boxes \node [label=$\mu$, fit=(mu-1) (mu-3), draw, fill=yellow, opacity=0.45] (mu) {}; \node [label=$\sigma$, fit=(sigma-1) (sigma-3), draw, fill=blue, opacity=0.3] (sigma) {}; \node [label=sample, fit=(sample-1) (sample-3), draw, fill=green, opacity=0.3] (sample) {}; % mu, sigma, sample connections \draw[->] (mu.east) edge (sample.west) (sigma.east) -- (sample.west); \foreach \a in {1,2,3} \foreach \b in {1,2,3} { \draw[->] (encoder-3-\a) -- (mu-\b); \draw[->] (encoder-3-\a) -- (sigma-\b); \draw[->] (sample-\a) -- (decoder-1-\b); } % input + output labels \foreach \idx in {1,...,5} { \node[left=0 of encoder-1-\idx] {$x_\idx$}; \node[right=0 of decoder-3-\idx] {$\hat x_\idx$}; } \node[above=0.1 of encoder-1-1] {input}; \node[above=0.1 of decoder-3-1] {output}; \end{tikzpicture} \end{document}
Click to download: vae.tex
Open in Overleaf: vae.tex
This file is available on tikz.netlify.app and on GitHub and is MIT licensed.
See more on the author page of Janosh Riebesell..