Showing the different possible and impossible spacetime dimensions.
Reproduction of Figure 1 in “On the dimensionality of spacetime” (1997) by M. Tegmark (arXiv:gr-qc/9702052).
Edit and compile if you like:
% Author: Izaak Neutelings (June 2022) % Inspiration: % "On the dimensionality of spacetime", Max Tegmark % https://arxiv.org/abs/gr-qc/9702052 \documentclass[border=3pt,tikz]{standalone} \usepackage{siunitx} \usepackage[outline]{contour} % glow around text \contourlength{1.1pt} \usetikzlibrary{3d} % for canvas % STYLE \tikzset{>=latex} \tikzstyle{border}=[thick,blue!15!black] \begin{document} % DIMENSIONS \begin{tikzpicture}[scale=1] \def\A{0.15} % amplitude of sine wave cut off \def\xmax{5.5} % maximum dimension \def\sinecut{ % path of sine wave cutoff (\xmax,0) -| (0,\xmax) -- plot (\x,{\xmax+\A*sin(deg(2*pi*\x)))}) -- (\xmax,\xmax) -- plot ({\xmax+\A*sin(deg(2*pi*\x)))},\xmax-\x) -- cycle } % CHART \colorlet{col-elliptic}{magenta!90!red!95} \colorlet{col-unstable}{cyan!90!black} \colorlet{col-simplist}{red!75!black!90} \colorlet{col-tachyons}{yellow} \colorlet{col-unpredic}{green!45!black!80} \colorlet{col-werehere}{white} \begin{scope} \clip[samples=200,domain=0:\xmax] \sinecut; \fill[col-elliptic] (0,0) rectangle (6,6); % elliptic \fill[col-unstable] (1,1) rectangle++ (6,6); % unstable \fill[col-simplist] (1,1) rectangle (3,3); % too simple \fill[col-werehere] (3,1) rectangle++ (1,1); % we are here \fill[col-tachyons] (1,3) rectangle++ (1,1); % tachyons \fill[col-unpredic] (2,2) rectangle (6,6); % unpredictable \draw (0,0) grid[step=1] (\xmax,\xmax); \end{scope} % LABELS \begin{scope}[every node/.style={align=center}] %font=\bf,font=\ttfamily \node at (3,0.5) { \contour{col-elliptic}{UNPREDICTABLE}\\ \contour{col-elliptic}{(elliptic)} }; \node[rotate=90] at (0.5,3) { \contour{col-elliptic}{UNPREDICTABLE}\\ \contour{col-elliptic}{(elliptic)} }; \node[right=-1,align=left] at (1,2) { \contour{col-simplist}{TOO}\\[3] \contour{col-simplist}{SIMPLE} }; \node[scale=0.6] at (1.5,3.5) { \contour{col-tachyons}{Tachyons}\\ %[3] \contour{col-tachyons}{only} }; \node[scale=0.6] at (1.5,3.5) { \contour{col-tachyons}{Tachyons}\\ %[3] \contour{col-tachyons}{only} }; \node[scale=0.82] at (3.5,1.5) { \contour{col-werehere}{We are}\\ \contour{col-werehere}{here} }; \node[right=-1,scale=0.68] at (4,1.5) { \contour{col-unstable}{UNSTABLE} }; \node[right=-1,scale=0.68,rotate=90] at (1.5,4) { \contour{col-unstable}{UNSTABLE} }; \node[right=-1,scale=1.06] at (2,4) { \contour{col-unpredic}{UNPREDICTABLE}\\[2] \contour{col-unpredic}{(ultrahyperbolic)} }; \end{scope} % BORDER \draw[border,samples=200,domain=0:\xmax] \sinecut; % AXIS \foreach \i [evaluate={\x=\i+0.5;}] in {0,...,5}{ \node[border,below] at (\x,0) {$\i$}; \node[border,left] at (0,\x) {$\i$}; } \node[above,rotate=90] at (-0.4,\xmax/2) {Number of temporal dimension}; \node[below] at (\xmax/2,-0.4) {Number of spatial dimension}; \end{tikzpicture} \end{document}
Click to download: relativity_dimensions.tex • relativity_dimensions.pdf
Open in Overleaf: relativity_dimensions.tex.