Physics domains at different spacetime scales & the Bronshtein cube (or “Bronstein cube”).
Inspired by “EUREKA!: Physics of Particles, Matter and the Universe” by R.J Blin-Stoyle.
Edit and compile if you like:
% Author: Izaak Neutelings (June 2022) % https://pubs.aip.org/aapt/ajp/article-abstract/91/10/819/2911822/All-objects-and-some-questions?redirectedFrom=fulltext \documentclass[border=3pt,tikz]{standalone} \usepackage{amsmath} % for \dfrac \usepackage{siunitx} \usepackage[outline]{contour} % glow around text \contourlength{1.2pt} \usetikzlibrary{3d} % for canvas \usetikzlibrary{shadows.blur} \usetikzlibrary{fadings} \usetikzlibrary{decorations.text} % for text along path % STYLE \tikzset{>=latex} \tikzstyle{xlab}=[below=-1,scale=0.85] \tikzstyle{ylab}=[left=-1,scale=0.85] % COLORS \colorlet{mydarkblue}{blue!40!black} \colorlet{mylightblue}{mydarkblue!12} %blue!70!black!20 \colorlet{myred}{red!80!black} \colorlet{mydarkred}{red!50!black} \colorlet{mylightred}{mydarkred!12} \colorlet{mydarkgreen}{green!30!black} \colorlet{mylightgreen}{mydarkgreen!12} \colorlet{myorange}{orange!63!black} \colorlet{mylightorange}{orange!80!black!12} % CUSTOM HATCHED (denser than default) \usetikzlibrary{patterns} % for hatched patterns \def\hatchsize{4pt} \makeatletter \pgfdeclarepatternformonly{myhatch}{% \pgfqpoint{-1pt}{-1pt}}{\pgfqpoint{\hatchsize}{\hatchsize}}{\pgfqpoint{\hatchsize}{\hatchsize} }{% %\pgfsetcolor{blue!50} %\tikz@pattern@color} \pgfsetlinewidth{0.3pt} \pgfpathmoveto{\pgfqpoint{0pt}{\hatchsize}} \pgfpathlineto{\pgfqpoint{\hatchsize}{0pt}} \pgfusepath{stroke} } \makeatother % CUSTOM SHADING \tikzfading[ name=fade out, inner color=transparent!0, outer color=transparent!100 ] \tikzfading[ name=fade right, left color=transparent!0, right color=transparent!100 ] % CUSTOM SHADING % https://tex.stackexchange.com/questions/326542/fill-a-square-with-radial-fading \usetikzlibrary{shadings} \makeatletter \pgfdeclareradialshading[tikz@radial@inner,tikz@radial@outer]% {myradial}{\pgfpointorigin}{% \pgfqpoint{-50bp}{-50bp}}{% color(0bp)=(pgftransparent!0);% color(20bp)=(pgftransparent!90);% color(30bp)=(pgftransparent!93);% color(40bp)=(pgftransparent!97);% color(50bp)=(pgftransparent!100)% } %\pgfdeclareradialshading[tikz@radial@inner,tikz@radial@outer]% % {myradial}{\pgfpointorigin}{% \pgfqpoint{-50bp}{-50bp}}{% % color(0bp)=(tikz@radial@inner);% % color(10bp)=(tikz@radial@outer!50!tikz@radial@inner);% % color(25bp)=(tikz@radial@outer!60!tikz@radial@inner);% % color(40bp)=(tikz@radial@outer!80!tikz@radial@inner);% % color(45bp)=(tikz@radial@outer!90!tikz@radial@inner);% % color(50bp)=(tikz@radial@outer)% % } %\pgfdeclareradialshading[tikz@radial@inner,tikz@radial@outer]% % {myradial}{\pgfpointorigin}{ % color(0bp)=(tikz@radial@inner);% % color(5bp)=(tikz@radial@outer!10!tikz@radial@inner);% % color(20bp)=(tikz@radial@outer!90!tikz@radial@inner);% % color(25bp)=(tikz@radial@outer)% % } \makeatother %\pgfuseshading{sw radial} \pgfdeclarefading{myradial}{\pgfuseshading{myradial}}% \begin{document} % SPACE & TIME SCALES % Inspiration: % "EUREKA!: Physics of Particles, Matter and the Universe", R.J Blin-Stoyle % https://aniketvartak.substack.com/p/human-experience-in-a-box?r=b0a55&s=w&utm_campaign=post&utm_medium=web \def\xmin{-15} % minimum space dimension ~ SM particles (OMG Particle: 1e-27, Planck length: 1.6e−35) \def\xmax{ 26} % maximum space dimension ~ observable universe \def\ymin{-23} % minimum time dimension ~ SM interactions (Planck time: 5.4e−44) \def\ymax{18} % maximum time dimension ~ age of universe ~ 13.8 Bya = 13.8e9*365*24*3600 s \def\xminhum{-4} % human experience xmin ~ 1e-4 m ~ 0.1 mm \def\xmaxhum{7} % human experience xmax ~ 1e7 m ~ 12,800 km (Earth's diameter) \def\yminhum{-2} % human experience ymin ~ 1e-2 s ~ 0.01 s \def\ymaxhum{10} % human experience ymax ~ 3e9 s ~ 100 y = 100*365*24*3600 s \def\tick#1#2{\draw[semithick] (#1) ++ (#2:15pt) --++ (#2-180:30pt)} \begin{tikzpicture}[ scale=0.1,x=40,y=40, every node/.style={align=center}, % for breaking lines in nodes ] % scale such that coordinates coincide with loglog % HATCHED AREA \contourlength{2pt} \draw[thick,pattern=myhatch,pattern color=black!80] (\xmin,\ymin) rectangle (\xmax,\ymax); % X AXIS LABELS \node[above,rotate=90] at ({\xmin-0.11*(\xmax-\xmin)},{(\ymin+\ymax)/2}) {Time [s]}; \node[right=4,xlab] at (\xmin,\ymin) {$10^{\xmin}$}; \node[left=2,xlab] at (\xmax,\ymin) {$10^{\xmax}$}; % Y AXIS LABELS \node[below] at ({(\xmin+\xmax)/2},{\ymin-0.05*(\ymax-\ymin)}) {Space [m]}; \node[above=2,ylab] at (\xmin,\ymin) {$10^{\ymin}$}; \node[below=2,ylab] at (\xmin,\ymax) {$10^{\ymax}$}; % GUIDE LINES \draw (\xminhum,\yminhum) -- (\xminhum,\ymin) node[xlab] {$10^{\xminhum}$}; \draw (\xmaxhum,\yminhum) -- (\xmaxhum,\ymin) node[xlab] {$10^{\xmaxhum}$}; \draw (\xminhum,\yminhum) -- (\xmin,\yminhum) node[ylab] {$10^{\yminhum}$}; \draw (\xminhum,\ymaxhum) -- (\xmin,\ymaxhum) node[ylab] {$10^{\ymaxhum}$}; % TICKS \tick{\xminhum,\ymin}{90}; \tick{\xmaxhum,\ymin}{90}; \tick{\xmin,\yminhum}{0}; \tick{\xmin,\ymaxhum}{0}; % LABELS \draw[thick,fill=white] (\xminhum,\yminhum) rectangle (\xmaxhum,\ymaxhum) node[midway,align=center,scale=0.88] { human\\experience }; \node[below left=1] at (\xmax,\ymax) { \contour{white}{observable}\\[-2] \contour{white}{universe} }; \node[below] at (-7,7) { % 1d-100y = 8.640e5-3e9 s \contour{white}{cells} }; \node[below=4.4] at (2.7,-0.7) { % < 20 km, 1e-3-10s \contour{white}{pulsars} }; \node[below] at (\xmaxhum,17) { % 4.543 Bya = 1.433e17 s \contour{white}{Earth} }; \node[above right=1] at (\xmin,\ymin) { \contour{white}{Standard}\\[-2] \contour{white}{Model}\\[-2] \contour{white}{interactions} }; \end{tikzpicture} % SPACE & TIME SCALES \begin{tikzpicture}[ scale=0.1,x=40,y=40, every node/.style={align=center}, % for breaking lines in nodes ] % scale such that coordinates coincide with loglog % HATCHED AREA \contourlength{2pt} \draw[thick,left color=mylightred,right color=mylightblue, middle color=white,shading angle=135] (\xmin,\ymin) rectangle (\xmax,\ymax); % X AXIS LABELS \node[above,rotate=90] at ({\xmin-0.11*(\xmax-\xmin)},{(\ymin+\ymax)/2}) {Time [s]}; \node[right=4,xlab] at (\xmin,\ymin) {$10^{\xmin}$}; \node[left=2,xlab] at (\xmax,\ymin) {$10^{\xmax}$}; % Y AXIS LABELS \node[below] at ({(\xmin+\xmax)/2},{\ymin-0.05*(\ymax-\ymin)}) {Space [m]}; \node[above=2,ylab] at (\xmin,\ymin) {$10^{\ymin}$}; \node[below=2,ylab] at (\xmin,\ymax) {$10^{\ymax}$}; % GUIDE LINES \draw[dashed,mydarkgreen] (\xminhum,\yminhum) -- (\xminhum,\ymin) node[xlab] {$10^{\xminhum}$}; \draw[dashed,mydarkgreen] (\xmaxhum,\yminhum) -- (\xmaxhum,\ymin) node[xlab] {$10^{\xmaxhum}$}; \draw[dashed,mydarkgreen] (\xminhum,\yminhum) -- (\xmin,\yminhum) node[ylab] {$10^{\yminhum}$}; \draw[dashed,mydarkgreen] (\xminhum,\ymaxhum) -- (\xmin,\ymaxhum) node[ylab] {$10^{\ymaxhum}$}; % TICKS \tick{\xminhum,\ymin}{90}; \tick{\xmaxhum,\ymin}{90}; \tick{\xmin,\yminhum}{0}; \tick{\xmin,\ymaxhum}{0}; % LABELS \draw[thick,mydarkgreen,inner color=mylightgreen,outer color=mylightgreen!30] (\xminhum,\yminhum) rectangle (\xmaxhum,\ymaxhum) node[midway,align=center,scale=0.88] { human\\experience }; \node[mydarkblue,below left=-1] at (\xmax,\ymax) { observable\\[-2]universe }; \node[below] at (-7,7) {cells}; % 1d-100y = 8.640e5-3e9 s \node[below=3] at (2.7,-0.7) {pulsars}; % < 20 km, 1e-3-10s \node[below] at (\xmaxhum,17) {Earth}; % 4.543 Bya = 1.433e17 s \node[mydarkred,above right=0] at (\xmin,\ymin) { \contour{mylightred}{Standard}\\[-2] \contour{mylightred}{Model}\\[-2] \contour{mylightred}{interactions} }; \fill[mydarkred] (\xmin,\ymin) circle(12pt); \fill[mydarkblue] (\xmax,\ymax) circle(12pt); \end{tikzpicture} % BRONSTEIN CUBE / BRONSHTEIN CUBE % G (Gravitation), 1/c (Velocity), hbar (Action) % Inspiration: % https://arxiv.org/pdf/1803.02577.pdf % http://backreaction.blogspot.com/2011/05/cube-of-physical-theories.html % https://www.motionmountain.net/physicscube.html \begin{tikzpicture}[ scale=3,y={(0:1cm)},x={(-140:0.65cm)},z={(0,1cm)}, note/.style={midway,sloped,above,scale=0.5}, bar/.style={thick,blue!40!black,line cap=round}, axis/.style={->,bar,black}, point/.style={mydarkred,canvas is yz plane at x=0}, point at 1/.style={mydarkred,canvas is yz plane at x=1}, every node/.style={align=center}, % for breaking lines in nodes ] \def\R{0.03} % sphere radius \def\xmax{1.3} % FILLS \begin{scope}[canvas is xy plane at z=0] \fill[mydarkred!20,path fading=fade out,fading transform={shift={(35:1.0)}}] (0,-0.2) rectangle (1,1); \fill[mydarkred!20,path fading=fade out,fading transform={shift={(-35:1.0)}}] (0,-0.2) rectangle (1,1); \fill[mydarkgreen!20,path fading=fade out,fading transform={shift={(112:0.8)}}] (0,0) rectangle (1.2,1.2); \fill[mydarkblue!20,path fading=fade out,fading transform={shift={(-135:1.1)}}] (-0.2,0) rectangle (1,1.2); \end{scope} \begin{scope}[canvas is yz plane at x=0] \clip (0,0) rectangle (1,1); \draw[left color=mydarkgreen!20, right color=white,middle color=white] (0,0) rectangle (1.5,1); \fill[path fading=fade out,mydarkred!20] (1,0) circle(0.7); \fill[path fading=fade out,mydarkblue!20] (1,1) circle(0.7); (0,0) rectangle (1,1); \end{scope} \begin{scope}[canvas is xz plane at y=0] \clip (0,0) rectangle (1,1); \draw[left color=mydarkblue!20,right color=mydarkgreen!20] (0,0) rectangle (1,1); \end{scope} % AXES \fill[point] (0,0) circle(\R); % (0,0,0) \draw[bar,shorten <=50*\R] (0,0,0) -- (1,0,0); %node[note,pos=0.50] {fast motion}; \draw[bar,shorten <=70*\R] (0,0,0) -- (0,1,0); %node[note,pos=0.75] {tiny motion}; \draw[bar,shorten <=70*\R] (0,0,0) -- (0,0,1); %node[note,pos=0.35,below] {bound motion}; \fill[point] (0,1) circle(\R); % (0,0,1) \fill[point] (1,0) circle(\R); % (0,1,0) \fill[point at 1] (0,0) circle(\R); % (1,0,0) % EXTRA BARS \draw[axis,shorten <=50*\R] (1,0,0) -- (\xmax,0,0) node[above left=-2] {$1/c$}; \draw[axis,shorten <=70*\R] (0,1,0) -- (0,\xmax,0) node[above left=0] {$\hbar$}; \draw[axis,shorten <=70*\R] (0,0,1) -- (0,0,\xmax) node[below left=1] {$G$}; \draw[bar,shorten <=50*\R] (0,0,1) -- (1,0,1); \draw[bar,shorten <=70*\R] (0,0,1) -- (0,1,1); \draw[bar,shorten <=70*\R] (1,0,0) -- (1,0,1); \draw[bar,shorten <=70*\R] (1,0,0) -- (1,1,0); \fill[point at 1] (0,1) circle(\R); % (1,0,1) \draw[bar,shorten <=70*\R] (1,0,1) -- (1,1,1); \draw[bar,shorten <=70*\R] (0,1,0) -- (0,1,1); \draw[bar,shorten <=70*\R] (0,1,0) -- (1,1,0); \fill[point] (1,1) circle(\R); \draw[bar,shorten <=70*\R] (0,1,1) -- (1,1,1); \fill[point at 1] (1,0) circle(\R); \draw[bar,shorten <=70*\R] (1,1,0) -- (1,1,1); \fill[point at 1] (1,1) circle(\R); % LABELS \node[left=3,below right,scale=0.8] at (0,0,0) {Classical\\Mechanics}; \node[below right,scale=0.8] at (0,0,1) {Newtonian\\Gravity}; \node[left=4,below right,scale=0.8] at (1,0,0) {Special\\Relativity}; \node[below right,scale=0.8] at (1,0,1) {General\\Relativity}; \node[left=2,below right=0,scale=0.8] at (0,1,0) {Quantum\\Mechanics}; \node[below right=-3,scale=0.8] at (1,1,0) {Quantum\\Field Theory}; \node[below=3,right,scale=0.8] at (0,1,1) {Non-relativistic\\Quantum Gravity}; \node[below right=-1,scale=0.8] at (1,1,1) %{Theory of\\Everything}; {Quantum\\Gravity}; \end{tikzpicture} % Plank hyperbola (lP = sqrt(hbar*G/c^3) constant) % https://arxiv.org/abs/2001.04491 \begin{tikzpicture}[ scale=5, every node/.style={align=center}, % for breaking lines in nodes ] \def\A{0.25} % hyperbola coefficient % AXIS \draw[thick,left color=mylightred,right color=mylightblue, middle color=white,shading angle=135] (0,0) rectangle (1,1); \draw[<->,thick] (1.1,0) node[below left=0] {$\hbar$} -| (0,1.1) node[below left=0] at (0,1) {$G$}; \draw[black!50,dashed] (0.5,0) --+ (0,1); \draw[black!50,dashed] (0,0.5) --+ (1,0); % PLANCK HYPERBOLA (Planck length constant) \draw[mydarkblue,thick,domain=\A:1,samples=100] plot(\x,\A/\x); \node[mydarkblue,above right=-3.5,scale=0.75] at (0.48,\A/0.48) %,rotate=-45 %{\contour{white}{$l_\mathrm{P}=\sqrt{\dfrac{\hbar G}{c^3}}$}}; {\contour{white}{$G=\dfrac{l_\mathrm{P}^2c^3}{\hbar}$}}; % REGIME LABELS \node[scale=0.8,below left=-1] at (0,0) {$c=1$}; \node[scale=0.8,above right=-1] at (0,0) {Special\\Relativity}; \node[scale=0.8,above left=-1] at (1,0) {Quantum\\Field Theory}; \node[scale=0.8,below right=-1] at (0,1) {General\\Relativity}; \node[scale=0.8,below left=-1] at (1,1) {Quantum\\Gravity}; % LABELS \node[mydarkblue,scale=0.75,above=0] at (\A,1) {geometry\\[-2]dominated}; \node[mydarkblue,scale=0.75,right=0,align=left] at (1,\A) {energy\\[-2]dominated}; \node[mydarkblue,scale=0.6,right=3,below right=0] at (\A,1) {classical field\\[-2] %\contour{mylightblue!70}{classical field}\\[-2] theory on\\[-2] quantum\\[-2] geometry}; \node[mydarkblue,scale=0.6,above left=0] at (1,\A+0.08) {quantum field\\[-2] theory on curved\\[-2] spacetime}; \end{tikzpicture} % cGh physics % Inspiration: % https://en.wikipedia.org/wiki/CGh_physics \usetikzlibrary{shapes} % for cloud \begin{tikzpicture}[ xscale=2.8,yscale=2.4, myarrow/.style={->,very thick,draw=mydarkgreen}, myredarrow/.style={myarrow,draw=mydarkred}, mybluearrow/.style={myarrow,draw=mydarkblue}, myorangearrow/.style={myarrow,draw=myorange,dashed}, mynode/.style={thick,draw=mydarkgreen,fill=mylightgreen,rectangle,rounded corners=4,align=center}, myrednode/.style={mynode,draw=mydarkred,fill=mylightred}, mybluenode/.style={mynode,draw=mydarkblue,fill=mylightblue}, myorangenode/.style={mynode,draw=myorange,fill=mylightorange}, mycap/.style={shorten <=-0.3,line cap=round} ] % ROW 1 \node[mynode] (CM) at (0,0) {Classical\\Mechanics}; \node[mynode] (NG) at (1,0) {Newtonian\\Gravity}; \draw[myarrow] (CM) -- (NG); % ROW 2 \node[myrednode] (QM) at (-1,-1) {Quantum\\Mechanics}; \node[mynode] (EM) at ( 0,-1) {Electro-\\magnetism}; \node[mybluenode] (SR) at ( 1,-1) {Special\\Relativity}; \node[mybluenode] (GR) at ( 2,-1) {General\\Relativity}; \draw[mybluearrow] (SR) -- (EM); \draw[mybluearrow] (SR) -- (GR); % ROW 3 \node[myrednode] (QF) at (0,-2) {Quantum\\Field\\Theory}; \node[myorangenode] (CS) at (1,-2) {QFT in\\curved\\spacetime}; %\node[myrednode,dashed] (QG) at (2,-2) {Quantum\\Gravity}; \node[myorangenode,cloud,inner sep=0,loosely dashed, aspect=1.5,cloud puffs=12,cloud puff arc=170] (QG) at (2,-2) {Quantum\\Gravity}; \draw[myredarrow] (QF) -- (CS); \draw[myorangearrow] (CS) -- (QG); % ARROWS \draw[myarrow,mycap] (CM) -- (QM); \draw[myarrow,mycap] (CM) -- (SR); \draw[myarrow,mycap] (NG) -- (GR); \draw[myredarrow,mycap] (QM) -- (QF); \draw[myarrow] (EM) -- (QF); \draw[mybluearrow,mycap] (SR) -- (QF); \draw[myorangearrow] (GR) -- (QG); \draw[myorangearrow,shorten <=-0.55] (GR) -- (CS); \end{tikzpicture} % MR-diagram % https://arxiv.org/abs/1101.2760 \begin{tikzpicture}[ scale=4.5,x=45,y=30, % scale such that coordinates coincide with loglog every node/.style={align=center}, % for breaking lines in nodes ] \def\A{0.13} % hyperbola coefficient \def\B{0.80} % slope Schwarzschild radius line \pgfmathsetmacro\MP{sqrt(\A/\B)} % Planck mass \pgfmathsetmacro\LP{sqrt(\A*\B)} % Planck length \def\tick#1#2{\draw[thick] (#1) ++ (#2:0.5pt) --++ (#2-180:1pt)} \coordinate (P) at (\MP,\LP); % Compton-Schwarschild intersection % REGION FILLS \fill[mylightgreen] (0,0) rectangle (1,1); \fill[mylightorange] (0,0) rectangle (1,\LP); \fill[mylightblue] (P) -- (1,\B) |- cycle; \fill[mylightorange,domain=\MP:1,samples=100] (0,0) -- (0,\LP) -- (P) plot(\x,{\LP*(\x/\MP)^(1/3)}) |- cycle; \fill[mylightred,domain=\A:\MP,samples=100] plot(\x,\A/\x) -| (0,1) -- cycle; % SCHWARZSCHILD RADIUS \draw[mydarkblue,dashed] (0,0) -- (P); \draw[mydarkblue,thick] (P) -- (1,\B) node[pos=0.5,sloped,above=-1.5,scale=0.9] {Schwarzschild radius}; % COMPTON WAVELENGTH HYPERBOLA \draw[mydarkred,dashed,domain=\MP:1,samples=100] plot(\x,\A/\x); \draw[mydarkred,thick,domain=\A:\MP,samples=100] plot(\x,\A/\x); \draw[mydarkred,decorate, %postaction={decorate} decoration={ text effects along path, text={Compton wavelength}, text align={center},raise=3pt, text effects/.cd,characters={text along path,scale=0.9} },domain=\A:\MP,samples=100] plot(\x,\A/\x); % QUANTUM GRAVITY (Planck density): R ~ LP*(M/MP)^1/3 \draw[myorange,dashed] (\MP,0) |- (1,\LP); %\draw[myorange,thick] (0,\LP) -- +(1,0); \draw[myorange,thick,domain=\MP:1,samples=100] (0,\LP) -- (P) plot(\x,{\LP*(\x/\MP)^(1/3)}); \path (P) -- (1,{\LP/\MP^(1/3)}) node[myorange,pos=0.37,sloped,above=-0.5,scale=0.7] {Planck density}; % AXIS \draw[->,thick,line cap=round] % mass (x axis) (0,0) -- (1.05,0) node[below=0,below left=0] {$M$}; \draw[->,thick,line cap=round] % radius (y axis) (0,0) -- (0,1.05) node[below left=0] {$R$}; \tick{\MP,0}{90} node[below,scale=1] {$m_\mathrm{P}$}; \tick{0,\LP}{0} node[left,scale=1] {$l_\mathrm{P}$}; \fill[myorange] (P) circle(0.3pt); % REGIMES LABELS \node[mydarkgreen,scale=0.9] at (0.5,0.8) {CLASSICAL\\[-1]DOMAIN}; \node[mydarkred,scale=0.9] at (0.135,0.43) {QUANTUM\\[-1]DOMAIN}; \node[mydarkblue,scale=0.9,rotate=10] at (0.84,0.51) {RELATIVISTIC\\[-1]GRAVITY}; \node[myorange,scale=0.9] at (0.75,0.21) {QUANTUM\\[-1]\contour{mylightorange}{GRAVITY}}; %\\[-1]DOMAIN}; \node[myorange,scale=0.9] at (\MP,0.6*\LP) {\contour{mylightorange}{Planck scale}}; \end{tikzpicture} % MR-diagram (LOGLOG) % https://arxiv.org/abs/1107.0708 % https://arxiv.org/abs/1611.01913 % Planck mass: mP = sqrt(hbar*c/G) = 2.176e-8 kg % Planck length: lP = sqrt(hbar*G/c^3) = 1.616e-35 m % c = 2.998e8 m/s % G = 6.674e−11 m^3/kg/s^2 % hbar = 1.055e-34 m^2.kg/s % hbar/c = 3.519e-43 m.kg \begin{tikzpicture}[ scale=0.1,x=32,y=32, % scale such that coordinates coincide with loglog every node/.style={align=center}, % for breaking lines in nodes ] \def\xmin{-40} \def\xmax{35} \def\ymin{-41} \def\ymax{5} \def\LP{-35} % Planck length Compton-Schwarschild: sqrt(hbar*G/c^3) \def\MP{-8} % Planck mass Compton-Schwarschild: sqrt(hbar*c/G) \def\tick#1#2{\draw[thick] (#1) ++ (#2:25pt) --++ (#2-180:50pt)} \coordinate (P) at (\MP,\LP); % Compton-Schwarschild intersection \coordinate (C0) at (\xmin,{\LP+(\MP-\xmin)}); % Compton intersection with y axis \coordinate (S0) at (\xmax,{\LP+(\xmax-\MP)}); % Schwarschild intersection with y axis \coordinate (G0) at (\xmax,{\LP+(\xmax-\MP)/3}); % Quantum gravity intersection with y axis \begin{scope} \clip (\xmin,\ymin) rectangle (\xmax,\ymax); % REGION FILLS \fill[mylightgreen] (\xmin,\ymin) rectangle (\xmax,\ymax); %\fill[black!20] (\xmin,\ymin) rectangle (\xmax,\LP+0.01); \fill[mylightblue] (P) -- (S0) |- cycle; \fill[mylightred] (P) -- (C0) |- cycle; \fill[mylightorange] (P) -- (G0) |- (\xmin,\ymin) |- cycle; % SHADED TRANSITION REGION \fill[fill=mylightred,transform canvas={rotate around={45:(P)}},path fading=east] (P) rectangle +(3,{2*(\MP-\xmin)}); \fill[fill=mylightblue,transform canvas={rotate around={-45:(P)}},path fading=west] (P) rectangle +(-3,{2*(\xmax-\MP)}); % SCHWARZSCHILD LINE: R = 2GM/c^2 with slope 2G/c^2 = 1.485e-27 m/kg \draw[myorange,dashed] (\xmax,\LP) -| (\MP,\ymin); %\draw[myorange] (\MP,\ymin) -- (P); \draw[thick,mydarkblue,line cap=round] (P) -- (S0) node[pos=0.5,sloped,above=-2,scale=1] {Schwarzschild radius}; % QUANTUM GRAVITY (Planck density): R ~ LP*(M/MP)^1/3 \draw[thick,myorange,line cap=round] (\xmin,\LP) -- (P) -- (G0) node[pos=0.46,sloped,above=-2,scale=1] {Planck density}; \end{scope} % COMPTON LINE: R ~ hbar/(Mc) with slope hbar/c = 3.519e-43 m.kg \draw[dashed,mydarkgreen] (P) -- (\MP,\ymax); % vertical divider \draw[thick,mydarkred] (P) -- (C0) node[pos=0.5,sloped,above=-2,scale=1] {Compton wavelength}; \fill[myorange] (P) circle(0.3); % AXIS \draw[->,thick,line cap=round] % log mass (x axis) (\xmin,\ymin) -- (\xmax+2,\ymin) node[below=10,below left=0] {$\log[M/\si{kg}]$}; \draw[->,thick,line cap=round] % log radius (y axis) (\xmin,\ymin) -- (\xmin,\ymax+2.5) node[left=10,above left=0,rotate=90] {$\log[R/\si{m}]$}; % TICKS \foreach \x in {-30,-20,...,20}{ \tick{\x,\ymin}{90} node[left={\x<0?4:0},below=-1,scale=0.85] {$\x$}; } \foreach \y in {-40,-30,-20,...,5}{ \tick{\xmin,\y}{0} node[left=-1,scale=0.85] {$\y$}; } \tick{\MP,\ymin}{90} node[myorange,right=5,below=0,scale=0.9] {$m_\mathrm{P}$}; \tick{\xmin,\LP}{0} node[myorange,left,scale=0.9] {$l_\mathrm{P}$}; % REGIMES LABELS \node[mydarkgreen,scale=0.9,fill=mylightgreen,inner sep=1] at (\MP,-8) {CLASSICAL\\[-1]DOMAIN}; \node[mydarkred,scale=0.9] at (-30,-26) {QUANTUM\\[-1]DOMAIN}; \node[mydarkblue,scale=0.9] at (24,-17.5) {RELATIVISTIC\\[-1]GRAVITY}; \node[myorange,scale=0.9] at (23,-33) %{QUANTUM\\[-1]GRAVITY\\[-1]\contour{mylightorange}{DOMAIN}}; {QUANTUM\\[-1]\contour{mylightorange}{GRAVITY}}; %\\[-1]DOMAIN}; \node[myorange,scale=0.9,below=2] at (P) {\contour{mylightorange}{Planck scale}}; % LABELS \draw[->,mydarkred] (\MP-10,\ymax-1) --++ (-5,0) node[pos=0.6,below right,scale=0.7] {elementary\\[-2]particles}; \draw[->,mydarkblue] (\MP+10,\ymax-1) --++ (5,0) node[pos=0.6,below left,scale=0.7] {black\\[-2]holes}; \end{tikzpicture} \end{document}
Click to download: relativity_scales.tex • relativity_scales.pdf
Open in Overleaf: relativity_scales.tex.