Pseudorapidity on a 2D coordinate axis. For the coordinate system of the CMS detecter at the LHC, please see this post.

axis2D_pseudorapidity-001.pngaxis2D_pseudorapidity-002.pngaxis2D_pseudorapidity-003.pngaxis2D_pseudorapidity-004.png

This is the simplest method with a for-loop in two variables: θ and η:

\documentclass[border=3pt,tikz]{standalone}
\tikzset{>=latex} % for LaTeX arrow head
\begin{document}
\begin{tikzpicture}[scale=3]
\foreach \t/\e in {90/0,60/0.55,45/0.88,30/1.32,10/2.43,0/+\infty}{
\pgfkeys{/pgf/number format/precision=2}
\draw[->,thick] % eta lines
(0,0) -- (\t:1.2) node[anchor=180+\t,black] {$\eta=\e$}
node[black,pos=0.72,fill=white,scale=0.8,inner sep=2] {$\theta=\t^\circ$};
}
\end{tikzpicture}
\end{document}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

In the following method, η is calculated and rounded to two significant digits on the fly, with the exception for θ = 0:

\documentclass[border=3pt,tikz]{standalone}
\tikzset{>=latex} % for LaTeX arrow head
\begin{document}
\begin{tikzpicture}[scale=3]
\foreach \t in {90,60,45,30,10,0}{
\ifnum \t = 0
\def\e{+\infty} % infinity symbol
\else
\pgfmathparse{-ln(tan(\t/2))} % pseudorapidity
\pgfmathroundtozerofill{\pgfmathresult} % round with trailing zeroes
\pgfmathsetmacro\e{\t==90?0:\pgfmathresult} % no trailing zeroes for theta = 90
\fi
\draw[->,thick] % eta lines
(0,0) -- (\t:1.2) node[anchor=180+\t,black] {$\eta=\e$}
node[black,pos=0.72,fill=white,scale=0.8,inner sep=2] {$\theta=\t^\circ$};
}
\end{tikzpicture}
\end{document}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Full code to edit and compile if you like:

% Author: Izaak Neutelings (June 2017)
% Updated: December 2022
\documentclass[border=3pt,tikz]{standalone}
\usepackage[outline]{contour} % glow around text
\tikzset{>=latex} % for LaTeX arrow head
\usetikzlibrary{angles,quotes} % for pic (angle labels)
\usetikzlibrary{arrows.meta} % for arrow head size
\usetikzlibrary{bending} % for bending arrow head
\contourlength{1.5pt}
% TIKZ STYLES
\tikzstyle{eta line}=[->,black!60!red,thick,line cap=round]
\tikzstyle{theta node}=[black,pos=0.7,fill=white,scale=0.8,
inner sep=1.5pt,rounded corners=3pt]
\tikzstyle{mysmallarrow}=[-{Latex[length=3,width=2.5]},draw=black,line width=0.6,
angle radius=45,angle eccentricity=1.1]
\begin{document}
% PSEUDORAPIDITY with manual for-loop over theta, eta
\begin{tikzpicture}[scale=3]
\message{^^JPseudorapidity simple}
\def\R{1.2} % radius/length of lines
\node[scale=1,below left=1] at (0,\R) {$y$}; % y axis
\node[scale=1,below left=1] at (\R,0) {$z$}; % z axis
\foreach \t/\e in {90/0,60/0.55,45/0.88,30/1.32,10/2.43,0/+\infty}{ % loop over theta/eta
\pgfkeys{/pgf/number format/precision=2}
\draw[eta line] % eta lines
(0,0) -- (\t:\R) node[anchor=180+\t,black] {$\eta=\e$}
node[theta node] {$\theta=\t^\circ$};
}
%\draw[black!60!red,thick] (0,0.1*\R) |- (0.1*\R,0) ; % overlap in corner
\end{tikzpicture}
% PSEUDORAPIDITY with automatic calculation of eta
\begin{tikzpicture}[scale=3]
\message{^^JPseudorapidity with automatic calculation of eta}
\pgfkeys{/pgf/number format/precision=2} % two decimals
\def\R{1.2} % radius/length of lines
\node[scale=1,below left=1] at (0,\R) {$y$}; % y axis
 
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Click to download: axis2D_pseudorapidity.texaxis2D_pseudorapidity.pdf
Open in Overleaf: axis2D_pseudorapidity.tex

Leave a Reply

Your email address will not be published.