Cylinder Truncated by Plane

cylinder-truncated-by-plane

Edit and compile if you like:

\documentclass{article}
%
% File name: cylinder-truncated-by-plane.tex
% Description: 
% A solid bounded by the following surfaces
% z = 0
% x^{2} + y^{2} = 4
% x + y + z = 4
% is generated. I.e., the intersection of a cylinder with a plane 
% for z >= 0.
% 
% Date of creation: April, 23rd, 2022.
% Date of last modification: April, 23rd, 2022.
% Author: Efraín Soto Apolinar.
% https://www.aprendematematicas.org.mx/author/efrain-soto-apolinar/instructing-courses/
% Terms of use:
% According to TikZ.net
% https://creativecommons.org/licenses/by-nc-sa/4.0/
% 
\usepackage{tikz}
\usetikzlibrary{patterns}
\usepackage{tikz-3dplot}
\usetikzlibrary{math}
\usepackage[active,tightpage]{preview}
\PreviewEnvironment{tikzpicture}
\setlength\PreviewBorder{1pt}
%
\begin{document}
	%
	\tdplotsetmaincoords{60}{110}
	\begin{tikzpicture}[tdplot_main_coords,scale=0.65]
		\tikzmath{function a(\x,\y) {return (4.0-\x-\y);};}
		\pgfmathsetmacro{\final}{2.0*pi}
		\pgfmathsetmacro{\ejez}{a(0,0)}
		% The equation of the cyrcumference
		\draw[white] (0,-2.5,0) -- (2.75,0,0) node[blue,midway,below,sloped] {\footnotesize$x^2 + y^2 = 4$};
		% The region of integration: the circle of radius 2
		\draw[thick,fill=yellow,opacity=0.5] plot[domain=0:6.2832,smooth,variable=\t] ({2.0*cos(\t r)},{2.0*sin(\t r)},{0.0});
		%%% Coordinate axis
		\draw[thick,->] (0,0,0) -- (3.5,0,0) node [below left] {\footnotesize$x$};
		\draw[dashed] (0,0,0) -- (-3,0,0);
		\draw[thick,->] (0,0,0) -- (0,3.5,0) node [right] {\footnotesize$y$};
		\draw[dashed] (0,0,0) -- (0,-3,0);
		\draw[thick] (0,0,0) -- (0,0,\ejez);% node [above] {\footnotesize$z$};	
		% The plane: x + y + z = 4
		\pgfmathsetmacro{\Az}{a(2.5,2.5)}
		\pgfmathsetmacro{\Bz}{a(-2.5,2.5)}
		\pgfmathsetmacro{\Cz}{a(-2.5,-2.5)}
		\pgfmathsetmacro{\Dz}{a(2.5,-2.5)}
		\coordinate (A) at (2.5,2.5,\Az);
		\coordinate (B) at (-2.5,2.5,\Bz);
		\coordinate (C) at (-2.5,-2.5,\Cz);
		\coordinate (D) at (2.5,-2.5,\Dz);
		% The cylinder
		\foreach \angulo in {0,0.01,...,\final}{
			\pgfmathparse{2.0*cos(\angulo r)}
			\pgfmathsetmacro{\px}{\pgfmathresult}
			\pgfmathparse{2.0*sin(\angulo r)}
			\pgfmathsetmacro{\py}{\pgfmathresult}
			\draw[cyan,opacity=0.5] (\px,\py,0) -- (\px,\py,4.0-\px-\py);
		}
		% The intersection of the cylinder and the plane (the trace)
		\draw[blue,thick] plot[domain=0:6.2832,smooth,variable=\t] ({2.0*cos(\t r)},{2.0*sin(\t r)},{4.0-2.0*sin(\t r)-2.0*cos(\t r)});
		% Circumference & Ellipse bounding the solid.
		\draw[blue,thick,opacity=0.5] plot[domain=0:6.2831853,smooth,variable=\t] ({2.0*cos(\t r)},{2.0*sin(\t r)},{4.0-2*sin(\t r)-2.0*cos(\t r)}); 
		\draw[blue,thick,opacity=0.5] plot[domain=0:6.2831853,smooth,variable=\t] ({2.0*cos(\t r)},{2.0*sin(\t r)},{0.0}); 
		% The plane
		\draw[white] (C) -- (B) node[red,above,sloped,midway]{\footnotesize$x + y + z = 4$};
		\draw[red,dash dot] (A) -- (B) -- (C)	 -- (D) -- (A);
		\fill[pattern color=pink,pattern=north east lines] (A) -- (B) -- (C)	 -- (D) -- (A);
		\fill[pink,opacity=0.5] plot[domain=0:6.2832,smooth,variable=\t] ({2.0*cos(\t r)},{2.0*sin(\t r)},{4.0-2.0*sin(\t r) - 2.0*cos(\t r)});
		% z axis (last part)
		\draw[thick,->] (0,0,\ejez) -- (0,0,8) node [above] {\footnotesize$z$};	
	\end{tikzpicture}
\end{document}



Click to download: cylinder-truncated-by-plane.texcylinder-truncated-by-plane.pdf
Open in Overleaf:
cylinder-truncated-by-plane.tex
See more on the author page of Efraín Soto Apolinar.

Leave a Reply

Your email address will not be published.