The parallel axis theorem (or Steiner’s theorem).
Edit and compile if you like:
% Author: Izaak Neutelings (August 2021) \documentclass[border=3pt,tikz]{standalone} \usepackage{physics} \usepackage{tikz} \usepackage[outline]{contour} % glow around text \usetikzlibrary{calc} %\usetikzlibrary{angles,quotes} % for pic %\usetikzlibrary{arrows.meta} %\usetikzlibrary{patterns} \tikzset{>=latex} % for LaTeX arrow head \contourlength{1.35pt} \colorlet{xcol}{blue!70!black} \colorlet{xcol'}{xcol!50!red!80!black} \colorlet{vcol}{green!60!black} \colorlet{myred}{red!65!black} \colorlet{mydarkred}{red!40!black} \colorlet{mypurple}{blue!60!red!80} \colorlet{mydarkgreen}{green!20!black} \tikzstyle{rvec}=[->,xcol,very thick,line cap=round] \tikzstyle{vvec}=[->,vcol,very thick,line cap=round] \tikzstyle{CM}=[mydarkred,fill=red!80!black!80] \tikzstyle{mass}=[line width=0.6,draw=red!30!black, %rounded corners=1, top color=mydarkred!30,bottom color=mydarkred!10,shading angle=30] \tikzstyle{dark mass}=[line width=0.3,red!30!black, %rounded corners=1, top color=mydarkred!40,bottom color=mydarkred!60,shading angle=30] \def\r{0.05} % pulley small radius \tikzset{ pics/rotarr/.style={ code={ \draw[white,very thick] ({#1*cos(200)},0) arc(-200:30:{#1} and {#1/2}) --++ (125:0.1); \draw[->,mydarkgreen] ({#1*cos(200)},0) coordinate (W1) arc(-200:20:{#1} and {#1/2}) node[midway] (W2) {} --++ (125:0.1) coordinate (W3); }}, pics/rotarr/.default=0.4, } \begin{document} % PARALLEL AXIS (STEINER'S) THEOREM \def\L{1.2} % size scale \def\A{1.8} % height axis above body \def\d{2.2} % distance parallel axis to CM \def\ang{-20} % angle connection between axes \def\anga{72} % angle axes \def\bodyshape{ (-100:1.0*\L) to[out=190,in=-90] (180:1.4*\L) to[out=90,in=175] (110:1.0*\L) to[out=-5,in=185] ($(R)+(110:0.6*\L)$) to[out=5,in=90] ($(R)+(15:0.7*\L)$) to[out=-90,in=-20] ($(R)+(-120:0.7*\L)$) to[out=160,in=10] cycle } \def\body{ % shape \fill[ball color=red!80!black] \bodyshape; \draw[line width=0.6,draw=red!30!black,fill=red!60!black!5,fill opacity=0.85] \bodyshape; %\fill[mass] \bodyshape; } \begin{tikzpicture} \coordinate (M) at (0,0); % center of mass \coordinate (R) at (\ang:\d); % intersection with new axis \draw (M) --++ (\anga-180:1.5*\L) node[above left] {$I_\text{cm}$}; % axis below \draw (R) --++ (\anga-180:1.1*\L) node[above=4,right=2] {$I$}; % axis below \body \draw[CM] (M) circle(0.09) node[left] {CM}; % center of mass point \fill[red!80!black] (R) circle(0.02); \draw (M)++(\anga:0.05) --++ (\anga:\A); % axis above \draw (R) --++ (\anga:1.2*\A); % axis above \pic[rotate=\anga-90] at ($(R)+(\anga:\A)$) {rotarr}; % rotation arrow %\node[mydarkgreen,right=0] at (W3) {$\omega$}; \draw[<->] (\anga:0.7*\A) --++ (\ang:\d) % distance/radius R node[pos=0.5] {\contour{white}{$d$}}; \end{tikzpicture} % PARALLEL AXIS (STEINER'S) THEOREM - derivation with position vector \def\ys{0.6} % vertical minor axis ellipse \def\ri{0.56*\d} % small mass m_i distance from axis \def\angi{210} % small mass m_i polar angle \def\dx{0.15} % size small mass m_i \def\massi{ \draw[dark mass,rotate=\ang+\angi+30] % mass m_i (Ri)++(-45:{\dx/sqrt(2)}) to[out=95,in=-100]++ (90:\dx) to[out=170,in=10]++ (180:\dx) to[out=-100,in=100]++ (-90:\dx) to[out=10,in=175]++ (0:\dx) -- cycle; } \begin{tikzpicture} \def\angi{240} % small mass m_i polar angle \coordinate (M) at (0,0); % center of mass \coordinate (R) at (\ang:\d); % intersection with new axis \path[rotate around={\ang:(R)}] (R) --++ (\angi:{\ri} and {\ys*\ri}) coordinate(Ri); % small mass m_i % BODY \draw (M) --++ (\anga-180:1.5*\L) node[above left] {$I_\text{cm}$}; % axis below \draw (R) --++ (\anga-180:1.1*\L) node[above=4,right=2] {$I$}; % axis below \body % CENTER OF MASS & MASS i \draw[CM] (M) circle(0.09) node[above=0,left] {CM}; % center of mass point \massi \node[mydarkred,right=3,above=3,scale=0.9] at (Ri) {$\dd{m}$}; % VECTORS \draw[rvec] (R) -- ($(R)!0.98!(Ri)$) node[pos=0.4,below right=-2] {$\vb{r}$}; \draw[rvec] (R) -- ($(R)!0.98!(M)$) node[pos=0.5,above=-1] {$\vb{r}_{\text{cm}}$}; \draw[rvec,xcol'] (M)++(-50:0.09) -- ($(M)!0.99!(Ri)$) node[pos=0.5,below=1] {$\vb{r}'$}; % AXES \fill[red!80!black] (R) circle(0.02); \draw (M)++(\anga:0.05) --++ (\anga:\A); % axis above \draw (R) --++ (\anga:1.2*\A); % axis above \pic[rotate=\anga-90] at ($(R)+(\anga:\A)$) {rotarr}; % rotation arrow \node[mydarkgreen,right=0] at (W3) {$\omega$}; \draw[<->] (\anga:0.7*\A) --++ (\ang:\d) % distance/radius R node[pos=0.5] {\contour{white}{$d$}}; \end{tikzpicture} % PARALLEL AXIS (STEINER'S) THEOREM - derivation with velocity \def\massi{ \draw[dark mass,rotate=\ang+\angi-20] % mass m_i (Ri)++(-45:{\dx/sqrt(2)}) to[out=95,in=-100]++ (90:\dx) to[out=170,in=10]++ (180:\dx) to[out=-100,in=100]++ (-90:\dx) to[out=10,in=175]++ (0:\dx) -- cycle; } \begin{tikzpicture} \coordinate (M) at (0,0); % center of mass \coordinate (R) at (\ang:\d); % intersection with new axis \path[rotate around={\ang:(R)}] (R) --++ (\angi:{\ri} and {\ys*\ri}) coordinate(Ri); % small mass m_i % BODY \draw (M) --++ (\anga-180:1.5*\L) node[above left] {$I_\text{cm}$}; % axis below \draw (R) --++ (\anga-180:1.1*\L) node[above=4,right=2] {$I$}; % axis below \body % CENTER OF MASS \draw[dashed,rotate around={\ang:(R)}] % rotation ellipse through CM (R)++(135:{\d} and {\ys*\d}) arc(135:240:{\d} and {\ys*\d}); \draw[CM] (M) circle(0.09) node[above=4,left] {CM}; % center of mass point \draw[vvec] (M)++(\ang-90:0.07) --++ (\ang-90:0.7) % velocity center of mass node[left=1,below=-4] {$\vb{v}_\text{cm}$}; % SMALL MASS m_i \draw[dashed,rotate around={\ang:(R)}] % rotation ellipse through CM (R)++(135:{\ri} and {\ys*\ri}) arc(135:260:{\ri} and {\ys*\ri}); \massi \node[mydarkred,above=5,left=-1,scale=0.9] at (Ri) {$m_i$}; \draw[vvec,line width=0.8,rotate around={\ang:(R)}] (Ri)++(\angi+90:0.04) --++ (\angi+90:{0.6} and {\ys*0.6}) % velocity mass m_i node[pos=0.7,left=-1,scale=0.9] {$\vb{v}_i$}; \draw[rvec] (R) -- (Ri) node[pos=0.4,above=-2.5] {$\vb{r}_i$}; % AXES \fill[red!80!black] (R) circle(0.02); \draw (M)++(\anga:0.05) --++ (\anga:\A); % axis above \draw (R) --++ (\anga:1.2*\A); % axis above \pic[rotate=\anga-90] at ($(R)+(\anga:\A)$) {rotarr}; % rotation arrow \node[mydarkgreen,right=0] at (W3) {$\omega$}; \draw[<->] (\anga:0.7*\A) --++ (\ang:\d) % distance/radius R node[pos=0.5] {\contour{white}{$d$}}; \end{tikzpicture} % PARALLEL AXIS (STEINER'S) THEOREM - derivation with velocity (CM frame) \begin{tikzpicture} \def\ricm{sqrt(\d*\d-2*\d*\ri*cos(\angi-180)+\ri*\ri)} % distance to mass i from CM \def\angicm{atan2(\ri*sin(\angi-180),\ri*cos(\angi-180)-\d)} % distance to mass i from CM \coordinate (M) at (0,0); % center of mass \coordinate (R) at (\ang:\d); % intersection with new axis \path[rotate around={\ang:(R)}] (R) --++ (\angi:{\ri} and {\ys*\ri}) coordinate(Ri); % small mass m_i % BODY \draw (M) --++ (\anga-180:1.5*\L) node[above left] {$I_\text{cm}$}; % axis below \draw (R) --++ (\anga-180:1.1*\L) node[above=4,right=2] {$I$}; % axis below \body % CENTER OF MASS \draw[dashed,rotate=\ang] % rotation ellipse through CM (45:{\d} and {\ys*\d}) arc(45:-55:{\d} and {\ys*\d}); \draw[CM] (M) circle(0.09) node[above=4,left] {CM}; % center of mass point % SMALL MASS m_i \draw[dashed,rotate=\ang] % rotation ellipse through R (55:{\ricm} and {\ys*\ricm}) arc(55:-60:{\ricm} and {\ys*\ricm}); \massi \node[mydarkred,right=2,below=2,scale=0.9] at (Ri) {$m_i$}; \draw[vvec,line width=0.8,rotate=\ang] (Ri)++({\angicm-90}:0.04) --++ ({\angicm-90}:{0.6} and {\ys*0.6}) % velocity mass m_i node[pos=0.8,below right=-2,scale=0.9] {$\vb{v}_{i,\text{cm}}$}; \draw[rvec] (M)++({145+\angicm}:0.06) -- (Ri) node[pos=0.4,above right=-4.5] {$\vb{r}_{i,\text{cm}}$}; % AXES \fill[red!80!black] (R) circle(0.02); \draw (M)++(\anga:0.05) --++ (\anga:\A); % axis above \draw (R) --++ (\anga:1.2*\A); % axis above \pic[rotate=\anga-90] at (\anga:0.9*\A) {rotarr}; % rotation arrow \node[mydarkgreen,right=2] at (W3) {$\omega$}; \draw[<->] (\anga:0.65*\A) --++ (\ang:\d) % distance/radius R node[pos=0.5] {\contour{white}{$d$}}; \end{tikzpicture} \end{document}
Click to download: dynamics_moment_of_inertia_parrallel_axis.tex • dynamics_moment_of_inertia_parrallel_axis.pdf
Open in Overleaf: dynamics_moment_of_inertia_parrallel_axis.tex