The geometry of Rutherford scattering of α particles off gold nuclei is a hyperbolic trajectory as a function of the impact parameter. See Wikipedia or Hyperphysics. These figures were used in a presentation on Rutherford’s discovery of the nucleus.
Setup of the gold foil experiment:
Hyperbolic trajectory of an α particle in Rutherford scattering, following Rutherford’s historic 1911 paper:
Triangle NOA to compute the angle of deviation φ = π – 2θ
Several hyperbolic trajectories in Rutherford scattering:
Compound vs. single scattering:
Edit and compile if you like:
% Author: Izaak Neutelings (July 2017) % Sources: % https://www.tandfonline.com/doi/abs/10.1080/14786440508637080 % https://indico.cern.ch/event/1126814/contributions/4729554/attachments/2386887/4079372/Izaak_paper_reading_Rutherford_nucleus_20170713_v5.pdf \documentclass[border=3pt,tikz]{standalone} \usepackage{amsmath} % for \dfrac \usepackage{tikz} \tikzset{>=latex} % for LaTeX arrow head \usepackage{pgfplots} % for the axis environment \usetikzlibrary{calc} % to do arithmetic with coordinates \usetikzlibrary{angles,quotes} % for pic \usetikzlibrary{arrows.meta} % for arrow size \usetikzlibrary{bending} % for arrow head angle \tikzstyle{bend>}=[-{Latex[flex'=1,length=3,width=2.5]}] \tikzstyle{bend<}=[{Latex[flex'=1,length=3,width=2.5]}-] % colors %\definecolor{mylightblue}{RGB}{170,170,230} \definecolor{mylightgrey}{RGB}{230,230,230} \definecolor{mygrey}{RGB}{190,190,190} \definecolor{mydarkgrey}{RGB}{110,110,110} \definecolor{mygreen}{RGB}{120,220,160} \definecolor{mydarkgreen}{RGB}{60,120,60} \definecolor{myverydarkgreen}{RGB}{35,90,35} \definecolor{mydarkred}{RGB}{140,40,40} \definecolor{mylightblue}{RGB}{220,228,255} \definecolor{myblue}{RGB}{183,191,229} \definecolor{mydarkblue}{RGB}{50,70,190} \definecolor{mygold}{RGB}{250,200,80} % mark right angle \newcommand{\MarkRightAngle}[4][1.3mm]{ \coordinate (tempa) at ($(#3)!#1!(#2)$); \coordinate (tempb) at ($(#3)!#1!(#4)$); \coordinate (tempc) at ($(tempa)!0.5!(tempb)$);%midpoint \draw (tempa) -- ($(#3)!2!(tempc)$) -- (tempb); } \begin{document} % RUTHERFORD SCATTERING \begin{tikzpicture}[scale=1] \message{^^JRutherford scattering} % limits & parameters \def\xa{-2.4} \def\xb{ 4} \def\ya{-4} \def\yb{ 4} \def\tmax{2.1} \def\a{1.3} \def\b{1} \def\c{{sqrt(\a^2+\b^2)}} \def\N{50} % number of points % coordinates \coordinate (O) at ( 0,0); \coordinate (A) at (\a,0); \coordinate (F1) at ( {sqrt(\a^2+\b^2)},0); \coordinate (F2) at (-{sqrt(\a^2+\b^2)},0); \coordinate (P) at (-{\a^2/sqrt(\a^2+\b^2)},-{\a*\b/sqrt(\a^2+\b^2)}); \coordinate (P1) at (\xb*\a, \yb*\b); \coordinate (P2) at (\xb*\a,-\yb*\b); \coordinate (yshift) at (0,0.4); % axes & asymptotes \draw[mygrey] % x axis (\xa*\a,0) -- (\xb*\a,0); %\draw[mylightgrey] % y axis % (0,\ya*\b) -- (0,\yb*\b); \draw[dashed,mydarkgrey] (-\xb*\a*0.45, \ya*\b*0.45) -- (\xb*\a, \yb*\b) (-\xb*\a*0.45,-\ya*\b*0.45) -- (\xb*\a,-\yb*\b); % arrows \def\vtheta{30} \def\vradius{0.8} \draw[->,myverydarkgreen,shift=($(P1)-(yshift)$),scale=0.6] (0,0) -- (-\a,-\b) node[midway,below right=0pt] {${v}_i$}; \draw[->,myverydarkgreen,shift=($(P2)+(yshift)$),scale=0.6] (-\a,\b) -- (0,0) node[midway,above right=-2pt] {${v}_f$}; \draw[->,myverydarkgreen] (\a+0.35,{\vradius*sin(\vtheta)}) arc (180-\vtheta:180+\vtheta+10:\vradius) node[above right=0pt] {$v^*$}; % angles \MarkRightAngle[2.0mm]{F2}{P}{O} \pic[draw,myverydarkgreen,"$\theta$",angle radius=13,angle eccentricity=1.35] {angle=F2--O--P}; \pic[draw,bend>,myverydarkgreen,"$\phi$"{scale=1,anchor=100,inner sep=4.5},angle radius=10] {angle=P--O--P2}; % hyperbola \draw[color=mylightgrey,line width=0.5,samples=\N,smooth,variable=\t,domain=-\tmax*0.58:\tmax*0.58] % left plot({-\a*cosh(\t)},{\b*sinh(\t)}); \draw[color=mydarkgreen,line width=1,samples=\N,smooth,variable=\t,domain=-\tmax:\tmax] % right plot({ \a*cosh(\t)},{\b*sinh(\t)}); % {exp(\y)+exp(-\y) % nodes \draw[myverydarkgreen] (F2) -- (P) node[midway,below left=1,circle,fill=white,inner sep=-0.2] {$b$}; \fill %(F1) circle node[above] {F} (A) circle(1.5pt) node[above left=0] {A} (O) circle(1.5pt) node[above=2pt] {O}; \fill[mydarkred] (F2) circle(4.0pt) node[anchor=-60,inner sep=5] {N}; \node[left=1pt,above=-1] at ($(F2)!0.5!(O)$) {$c$}; \node[below right=-2] at ($(P)!0.4!(O)$) {$a$}; % alpha particle \draw[mydarkgreen,fill] ({ \a*cosh(\tmax*1.02)},{\b*sinh(\tmax*1.02)}) circle(1pt) node[above right=0pt] {$\alpha$}; \end{tikzpicture} % RUTHERFORD SCATTERING - backscattering \begin{tikzpicture}[scale=1] \message{^^JBack scattering} % limits & parameters \def\xa{-1.8} \def\xb{ 6} \def\ya{-4} \def\yb{ 4} \def\a{0.8} \def\b{0.02} \def\tmax{2.5} \def\c{{sqrt(\a^2+\b^2)}} \def\N{100} % number of points % coordinates \coordinate (O) at ( 0, 0 ); \coordinate (A) at ( \a, 0 ); \coordinate (F2) at ( -{sqrt(\a^2+\b^2)}, 0 ); \coordinate (P1) at (\xb*\a, \yb*\b); \coordinate (P2) at (\xb*\a,-\yb*\b); \coordinate (yshift) at (0,0.2); % axes & asymptotes \draw[mygrey] % x (\xa*\a,0) -- (\xb*\a,0); % arrows \def\vtheta{30} \def\vradius{0.8} \draw[->,myverydarkgreen,shift=($(P1)+(yshift)$),scale=0.6] (0,0) -- (-\a,-\b) node[midway,above left=1pt] {$v$}; \draw[->,myverydarkgreen,shift=($(P2)-(yshift)$),scale=0.6] (-\a,\b) -- (0,0); %node[midway,below right=0pt] {}; %${v}_f$ % hyperbola \draw[color=mydarkgreen,line width=0.8,samples=\N,variable=\t,domain=-\tmax:\tmax] plot({ \a*cosh(\t)},{\b*sinh(\t)}); % nodes \fill (A) circle(1.5pt) node[above=2pt,scale=0.9] {$v^*=0$}; \fill[mydarkred] (F2) circle(4.0pt) node[above=4pt] {N}; \draw[<->,myverydarkgreen,transform canvas={yshift=-6pt,scale=0.95}] (F2) -- (A) node[midway,fill=white,inner sep=1] {$d^*$}; % alpha particle \draw[mydarkgreen,fill] ({ \a*cosh(\tmax*1.02)},{\b*sinh(\tmax*1.02)}) circle(1pt) node[above right=0pt] {$\alpha$}; \end{tikzpicture} % RUTHERFORD GOLD FOIL EXPERIMENT - setup \begin{tikzpicture}[scale=1] \message{^^JGold foil experiment} % limits & parameters \def\xa{-2.0} % incoming beam length \def\xb{ 1.4} % horizontal line right \def\le{0.6} % eye size eye \def\ange{18} % eye opening angle \def\lb{1.7} % outgoing beam length \def\ang{-35} % outgoing beam scattering \def\h{0.45} % gold foil height \def\w{0.03} % gold foil width % coordinates \coordinate (A) at (\xa,0); % incoming beam \coordinate (R) at (\xb,0); % right line \coordinate (O) at ( 0,0); % beam hitting foil \coordinate (B) at (\ang:\lb); % outgoing beam % beams \draw[dashed] (O) -- (R); \draw[mydarkgreen,line width=1.5] (A) -- (O); \draw[mydarkgreen,line width=0.6] (O) -- (B); \fill[mygold,draw=orange,line width=0.1] (-\w,-\h) rectangle (\w,\h); % gold foil \fill[mydarkgreen] (-\w,0) circle(1.5pt); % angles & distance \draw[<->,myverydarkgreen,transform canvas={yshift=-5pt,scale=0.95}] (O) -- (B) node[midway,circle,inner sep=0.5,fill=white] {$r$}; \pic[draw,bend<,myverydarkgreen,"$\phi$",angle radius=19.4,angle eccentricity=1.29] {angle=B--O--R}; % eye \begin{scope}[shift={(\ang:\lb+1.2*\le)},rotate=\ang+180] \draw[] (\ange:\le) -- (0,0) -- (-\ange:\le); \draw[thick] (\ange:0.85*\le) arc(\ange:-\ange:0.85*\le); %\draw[fill,brown] (0.75*\le,0) ellipse ({0.10*\le} and {0.21*\le}); \draw[fill] (0.8*\le,0) ellipse ({0.08*\le} and {0.16*\le}); \end{scope} \end{tikzpicture} % RUTHERFORD SCATTERING - hyperbola triangle \begin{tikzpicture}[scale=2.5] \message{^^JHyperbolic triangle} % coordinates \coordinate (O) at ( 0,0); \coordinate (A) at (-1,0); \coordinate (B) at (-1,0.8); % lines \draw[] (O) -- (A) node[pos=0.15,below=-1] {$a=|\text{OA}|=c\cot\theta$} %\dfrac{c}{\tan(\theta)} -- (B) node[pos=0.5,left=1] {$b$} -- (O) node[pos=0.5,above right=-4] {$c=|\text{NO}|=\dfrac{b}{\sin\theta}$}; % points \fill (A) circle(0.5pt) node[anchor= 20,inner sep=3pt] {A} (O) circle(0.5pt) node[anchor=200,inner sep=4pt] {O}; \fill[mydarkred] (B) circle(1.5pt) node[anchor=-30,inner sep=4pt] {N}; % angles \MarkRightAngle{B}{A}{O} \pic[draw,"$\theta$",angle radius=20,angle eccentricity=1.25] {angle=B--O--A}; \end{tikzpicture} % RUTHERFORD SCATTERING - hyperbolic orbits with different impact parameters \begin{tikzpicture}[scale=1] \message{^^JHyperbolic trajectories} % limits & parameters \def\xa{-35} \def\xb{ 55} \def\ya{ -1} \def\yb{ 55} \def\tmax{5} \def\N{30} % number of points \begin{axis}[ xmin=\xa,xmax=\xb, ymin=\ya,ymax=\yb, hide x axis, hide y axis, ] \def\a{1} \foreach \u in {1,3,6,10,15,21,28,38}{ \message{^^J u=\u} \def\b{\u*0.25} \def\c{sqrt(\a^2+\b^2)} \addplot[color=mydarkgreen,line width=0.5,samples=\N,smooth,variable=\t,domain=-\tmax:\tmax] ({ \a/\c*(-\a*cosh(\t)-\c) + \b/\c*\b*sinh(\t) }, { -\b/\c*(-\a*cosh(\t)-\c) + \a/\c*\b*sinh(\t) }); } \addplot[mydarkred,mark=*,mark size=2pt,mark options=solid] coordinates {(0,0)}; \end{axis} \end{tikzpicture} % RUTHERFORD SCATTERING - single vs. compound scattering % http://www.ffn.ub.es/luisnavarro/nuevo_maletin/Rutherford%20(1911),%20Structure%20atom%20.pdf % https://tex.stackexchange.com/questions/45151/format-numbers-as-a-fraction-of-pi-with-tikz-pgfmathprintnumber \begin{tikzpicture}[scale=1] \message{^^JSingle vs. compound scattering} % limits & parameters \def\xa{0.0} \def\xb{1.0} \def\ya{0.0} \def\yb{1.0} \def\A{ 1.0} \def\B{ 1.0} \def\N{100} % number of points \begin{axis}[ xmin=\xa,xmax=\xb, ymin=\ya,ymax=\yb, legend cell align=right, legend style={ at={(1.0,0.0)}, anchor=south east, font=\fontsize{5}{6}\selectfont } ] \addplot[color=mylightgrey,line width=0.5,samples=2,variable=\x,domain=0:1] (\x,\x); \addlegendentryexpanded{$y=x$} \addplot[color=mydarkred,line width=0.5,samples=\N,variable=\px,domain=0:1] ({ \px },{ \A*exp(-0.72/(\B*\px)) }); \addlegendentryexpanded{$\phi=0$} \foreach \ang in {0.5,1,5,60}{ \message{^^J ang=\ang} \def\myphi{pi*\ang/180} \addplot[color=mygreen,line width=0.5,samples=\N,smooth,variable=\px,domain=0.002:1] ({ \px },{ \A*exp(-0.181*\myphi^2*cot(\myphi/2 r)^2/(\B*\px)) }); %*cot(\phi/2)^2 \addlegendentryexpanded{\ang$^\circ$} %\addplot[color=mygreen,line width=0.5,samples=\N,smooth,variable=\px,domain=0:1,forget plot] % ({ \px },{ exp(-0.181*\myphi^2*cot(\myphi/2 r)^2/\px) }); %*cot(\phi/2)^2 } \end{axis} \end{tikzpicture} \end{document}
Click to download: hyperbola.tex • hyperbola.pdf
Open in Overleaf: hyperbola.tex