Linear polarization of electromagnetic waves, and reducing its intensity (E0cos𝜃) or blocking it completely.
Adapted from this StackExchange post. For more related figures, please see the Optics category. Note that the slits shown here only indicate the direction of polarization, but do not represent physical slits in the polarizer.
Edit and compile if you like:
% Author: Izaak Neutelings (June 2020) % Inspiration: % https://tex.stackexchange.com/questions/113900/draw-polarized-light \documentclass[border=3pt,tikz]{standalone} %\usepackage{amsmath} % for \text \usepackage{tikz} \usepackage{physics} \usepackage{etoolbox} %ifthen \usetikzlibrary{calc} \usetikzlibrary{arrows,arrows.meta} \usetikzlibrary{angles,quotes} % for pic (angle labels) %\input{arrowsnew} %\renewcommand{\familydefault}{\sfdefault} \tikzset{>=latex} % for LaTeX arrow head \newcommand\degree{^\circ} \colorlet{crystal}{blue!75} \colorlet{vcol}{green!50!black} \colorlet{Ecol}{orange!90!black} \colorlet{EWcol}{orange!80!black} \colorlet{EVcol}{orange!80!black!60} \def\zangle{-20} \def\xangle{20} \tikzstyle{platecol}=[blue!80!black!40,opacity=0.8] \tikzstyle{platetopcol}=[blue!90!black!50,opacity=0.8] \tikzstyle{platesidEcol}=[blue!70!black!50,opacity=0.8] \tikzstyle{mydashed}=[dash pattern=on 1.2 off 0.7,line width=0.3] \tikzstyle{Evec}=[EVcol,-{Stealth[length=1.8,width=1.2]},line width=0.2] %\tikzstyle{Evec}=[EVcol,-stealth,line width=0.2] %\tikzstyle{Evec}=[EVcol,-{>[scale=0.2]},line width=0.2] %\tikzstyle{Evec}=[EVcol,-latexnew,arrowhead=1,line width=0.2] % RIGHT ANGLE \newcommand\rightAngle[4]{ \pgfmathanglebetweenpoints{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}} \coordinate (tmpRA) at ($(#2)+(\pgfmathresult+45:#4)$); \draw[white,line width=0.6] ($(#2)!(tmpRA)!(#1)$) -- (tmpRA) -- ($(#2)!(tmpRA)!(#3)$); \draw[blue!40!black] ($(#2)!(tmpRA)!(#1)$) -- (tmpRA) -- ($(#2)!(tmpRA)!(#3)$); } % POLARIZER \def\W{3.5} % width polarizer \def\w{0.05} % width slit \def\l{2.9} % length slit \def\t{0.05} \def\N{7} % number of slits \tikzset{ plate/.pic={ % \fill[platetopcol] % (-\W/2,\W/2,0) --++ (\W,0,0) --++ (0,0,-\t) --++ (-\W,0,0) -- cycle; % \fill[platesidEcol] % (-\W/2,-\W/2,0) --++ (0,\W,0) --++ (0,0,-\t) --++ (0,-\W,0) -- cycle; % \fill[platecol,even odd rule] % (-\W/2,-\W/2,0) --++ (\W,0,0) --++ (0,\W,0) --++ (-\W,0,0) -- cycle % \foreach \i [evaluate={\x=-\W/2+\i*\W/(\N+1);}] in {1,...,\N}{ % (\x-\w/2,-\l/2) --++ (0,\l) --++ (\w,0) --++ (0,-\l) -- cycle % }; \ifnumless{45}{#1}{ \def\topang{#1} }{ \def\topang{#1+90} } \fill[platetopcol] (\topang:\W/2)++(\topang-90:\W/2) --++ (0,0,-\t) --++ (\topang+90:\W) --++ (0,0,\t) -- cycle; \fill[platesidEcol] (\topang+90:\W/2)++(\topang:\W/2) --++ (0,0,-\t) --++ (\topang+180:\W) --++ (0,0,\t) -- cycle; \fill[platecol] (#1:\W/2)++(#1-90:\W/2) --++ (#1-180:\W) --++ (#1+90:\W) --++ (#1:\W) -- cycle \foreach \i [evaluate={\x=-\W/2+\i*\W/(\N+1);}] in {1,...,\N}{ (#1:\l/2)++(#1+90:\x+\w/2) --++ (#1-180:\l) --++ (#1-90:\w) --++ (#1:\l) -- cycle }; } } \begin{document} % POLARIZATION: 90, theta \begin{tikzpicture}[x=(15:0.5), y=(90:0.6), z=(-20:2.2)] \def\A{1.4} \def\L{3.2} \def\M{4.5} \def\nwave{4} \def\k{(360*\nwave/\M)} % 2pi*n / L = 360*n / L %\def\dx{90/\k} \def\nvec{40} % per wavelength % SECTION 1 \draw[thick] (0,0,0) -- (0,0,0.4*\L); \foreach \ang in {45,90,...,360}{ \draw[<->,very thick,Ecol] (0,0,0.4*\L)++(\ang:\A) --++ (\ang+180:2*\A); } %\node[Ecol,above] at (45:\A) {$\vb{E}$}; \draw[thick] (0,0,0.4*\L) -- (0,0,\L); \draw[->,very thick,vcol] (0,0,0.4*\L)++(60:1.1*\A) --++ (0,0,0.2*\L) node[right] {$\vb{v}$}; \node[scale=0.9,yslant=tan(-10)] at (0,-1.4*\A,0.4*\L) {unpolarized}; % SECTION 2 \begin{scope}[shift={(0,0,\L)}] \pic at (0,0) {plate={90}}; \node[scale=0.9,yslant=tan(-10),right=7,below] at (-135:0.7*\W) {polarizer}; \draw[thick] (0,0,0) -- (0,0,\M/2); \draw[<->,very thick,Ecol] (0,0,\M/2)++(90:\A) --++ (-90:2*\A); %-\dx \draw[EWcol,samples=100,smooth,variable=\z,domain=0:\M] plot(0,{\A*cos(\k*\z)},\z); \foreach \i [evaluate={\z=\i*\M/\nvec; \c=int(\i!=\nvec/2);}] in {0,...,\nvec}{ \ifnum\c=1 \draw[Evec] (0,0,\z) --++ (90:{\A*cos(\k*\z)}); \fi } \draw[thick] (0,0,\M/2) -- (0,0,\M); \node[scale=0.9,yslant=tan(-10),below=-7,align=center] at (0,-1.4*\A,0.45*\M) {linearly polarized\\$E_0$}; \end{scope} % SECTION 3 \begin{scope}[shift={(0,0,\L+\M)}] \pic at (0,0) {plate={45}}; \node[scale=0.9,yslant=tan(-10),left=7,below] at (-90:0.7*\W) {analyzer}; \draw[->,thick] (0,0,0) -- (0,0,1.2*\L); \draw[<->,very thick,Ecol] (0,0,\M/2)++(45:{\A*cos(45)}) --++ (-135:{2*\A*cos(45)}); %-\dx \draw[Ecol!50!black!90,mydashed] (90:\A) -- (45:{\A*cos(45)}); \draw[EWcol,samples=100,smooth,variable=\z,domain=0:0.74*\M] plot({\A*cos(\k*\z)*cos(45)^2},{\A*cos(\k*\z)*cos(45)^2},\z); \foreach \i [evaluate={\z=\i*\M/\nvec; \c=int(\i!=\nvec/2 && \i<23);}] in {0,...,\nvec}{ \ifnum\c=1 \draw[Evec] (0,0,\z) --++ (45:{\A*cos(\k*\z)*cos(45)}); \fi } \node[scale=0.9,yslant=tan(-10),below=-7,align=center] at (0,-1.4*\A,0.55*\L) {linearly polarized\\$E_0\cos\theta$}; \end{scope} \end{tikzpicture} % POLARIZATION: 90, 0 \begin{tikzpicture}[x=(15:0.5), y=(90:0.6), z=(-20:2.2)] \def\A{1.4} \def\L{3.2} \def\M{4.9} \def\nwave{4} \def\k{(360*\nwave/\M)} % 2pi*n / L = 360*n / L %\def\dx{90/\k} \def\nvec{40} % per wavelength % SECTION 1 \draw[thick] (0,0,0) -- (0,0,0.4*\L); \foreach \ang in {45,90,...,360}{ \draw[<->,very thick,Ecol] (0,0,0.4*\L)++(\ang:\A) --++ (\ang+180:2*\A); } %\node[Ecol,above] at (45:\A) {$\vb{E}$}; \draw[thick] (0,0,0.4*\L) -- (0,0,\L); \draw[->,very thick,vcol] (0,0,0.4*\L)++(60:1.1*\A) --++ (0,0,0.2*\L) node[right] {$\vb{v}$}; \node[scale=0.9,yslant=tan(-10)] at (0,-1.4*\A,0.4*\L) {unpolarized}; % SECTION 2 \begin{scope}[shift={(0,0,\L)}] \pic at (0,0) {plate={90}}; \draw[thick] (0,0,0) -- (0,0,\M/2); \draw[<->,very thick,Ecol] (0,0,\M/2)++(90:\A) --++ (-90:2*\A); %-\dx \draw[EWcol,samples=100,smooth,variable=\z,domain=0:\M] plot(0,{\A*cos(\k*\z)},\z); \foreach \i [evaluate={\z=\i*\M/\nvec; \c=int(\i!=\nvec/2);}] in {0,...,\nvec}{ \ifnum\c=1 \draw[Evec] (0,0,\z) --++ (90:{\A*cos(\k*\z)}); \fi } \draw[thick] (0,0,\M/2) -- (0,0,\M); \node[scale=0.9,yslant=tan(-10)] at (0,-1.4*\A,0.4*\M) {linearly polarized}; \end{scope} % SECTION 3 \begin{scope}[shift={(0,0,\L+\M)}] \pic at (0,0) {plate={0}}; \draw[->,thick] (0,0,0) -- (0,0,0.8*\L); \node[scale=0.9,yslant=tan(-10)] at (0,-1.4*\A,0.3*\L) {blocked}; \end{scope} \end{tikzpicture} % POLARIZATION: 90, 45, 0 \begin{tikzpicture}[x=(15:0.5), y=(90:0.6), z=(-20:2.2)] \def\A{1.4} \def\L{3.2} \def\nwave{3} \def\k{(360*\nwave/\L)} % 2pi*n / L = 360*n / L %\def\dx{90/\k} \def\nvec{30} % per wavelength % SECTION 1 \draw[thick] (0,0,0) -- (0,0,0.4*\L); \foreach \ang in {45,90,...,360}{ \draw[<->,very thick,Ecol] (0,0,0.4*\L)++(\ang:\A) --++ (\ang+180:2*\A); } %\node[Ecol,above] at (45:\A) {$\vb{E}$}; \draw[thick] (0,0,0.4*\L) -- (0,0,\L); \draw[->,very thick,vcol] (0,0,0.4*\L)++(60:1.1*\A) --++ (0,0,0.2*\L) node[right] {$\vb{v}$}; \node[scale=0.9,yslant=tan(-10)] at (0,-1.4*\A,0.4*\L) {$I_0$}; %,align=center % SECTION 2 \begin{scope}[shift={(0,0,\L)}] \pic at (0,0) {plate={90}}; \draw[thick] (0,0,0) -- (0,0,\L/2); \draw[<->,very thick,Ecol] (0,0,\L/2)++(90:\A) --++ (-90:2*\A); %-\dx \draw[EWcol,samples=100,smooth,variable=\z,domain=0:\L] plot(0,{\A*cos(\k*\z)},\z); \foreach \i [evaluate={\z=\i*\L/\nvec; \c=int(\i!=\nvec/2);}] in {0,...,\nvec}{ \ifnum\c=1 \draw[Evec] (0,0,\z) --++ (90:{\A*cos(\k*\z)}); \fi } \draw[thick] (0,0,\L/2) -- (0,0,\L); \node[scale=0.9,yslant=tan(-10)] at (0,-1.4*\A,0.4*\L) {$\dfrac{I_0}{2}$}; %, $90\degree$ \end{scope} % SECTION 3 \begin{scope}[shift={(0,0,2*\L)}] \pic at (0,0) {plate={45}}; \draw[thick] (0,0,0) -- (0,0,\L/2); \draw[<->,very thick,Ecol] (0,0,\L/2)++(45:{\A*cos(45)}) --++ (225:{2*\A*cos(45)}); %-\dx \draw[thick] (0,0,\L/2) -- (0,0,\L); \draw[Ecol!50!black!90,mydashed] (90:\A) -- (45:{\A*cos(45)}); \draw[EWcol,samples=100,smooth,variable=\z,domain=0:\L] plot({\A*cos(\k*\z)*cos(45)^2},{\A*cos(\k*\z)*cos(45)^2},\z); \foreach \i [evaluate={\z=\i*\L/\nvec; \c=int(\i!=\nvec/2);}] in {0,...,\nvec}{ \ifnum\c=1 \draw[Evec] (0,0,\z) --++ (45:{\A*cos(\k*\z)*cos(45)}); \fi } \node[scale=0.9,yslant=tan(-10)] at (0,-1.4*\A,0.4*\L) {$\dfrac{I_0}{2}\cos^2(45\degree)$}; %, $45\degree$ \end{scope} % SECTION 4 \begin{scope}[shift={(0,0,3*\L)}] \pic at (0,0) {plate={0}}; \draw[thick] (0,0,0) -- (0,0,\L/2); \draw[Evec] (0,0,14*\L/\nvec) --++ (0:{\A*cos(\k*14*\L/\nvec)*cos(45)^2}); % put behind big arrow \draw[<->,very thick,Ecol] (0,0,\L/2)++(0:{\A*cos(45)^2}) --++ (180:{2*\A*cos(45)^2}); %-\dx \draw[->,thick] (0,0,\L/2) -- (0,0,1.05*\L); \draw[Ecol!50!black!90,mydashed] (45:{\A*cos(45)}) -- (0:{\A*cos(45)^2}); \draw[EWcol,samples=100,smooth,variable=\z,domain=0:0.93*\L] plot({\A*cos(\k*\z)*cos(45)^2},0,\z); \foreach \i [evaluate={ \z=\i*\L/\nvec; \c=int(\i!=\nvec/2 && \i!=\nvec/2-1 && \i<\nvec-2); }] in {0,...,\nvec}{ \ifnum\c=1 \draw[Evec] (0,0,\z) --++ (0:{\A*cos(\k*\z)*cos(45)^2}); \fi } \node[scale=0.9,yslant=tan(-10)] at (0,-1.4*\A,0.45*\L) {$\dfrac{I_0}{2}\cos^4(45\degree)$}; %, $0\degree$ \end{scope} \end{tikzpicture} % POLARIZER projection \begin{tikzpicture} \def\W{2.5} % width polarizer \def\w{0.05} % width slit \def\l{2.3} % length slit \def\N{7} % number of slits \def\A{1.5} % amplitude/size E vector \def\ang{45} % angle polarizer \coordinate (O) at (0,0); \coordinate (E0) at (90:\A); \coordinate (E) at (45:{\A*cos(45)}); \fill[blue!80!black!15,shift={(45:0.11*\W)}] (\ang:\W/2)++(\ang-90:\W/2) --++ (\ang-180:\W) --++ (\ang+90:\W) --++ (\ang:\W) -- cycle \foreach \i [evaluate={\x=-\W/2+\i*\W/(\N+1);}] in {1,...,\N}{ (\ang:\l/2)++(\ang+90:\x+\w/2) --++ (\ang-180:\l) --++ (\ang-90:\w) --++ (\ang:\l) -- cycle }; \draw[Ecol!50!black!90,dashed] (-135:0.75*\A) -- (45:1.2*\A) coordinate (T); \draw[Ecol!50!black!90,dashed] (90:\A) -- (45:{\A*cos(45)}); \rightAngle{O}{E}{E0}{0.38} \draw[->,Ecol,very thick] (0,0) -- (E0) node[midway,left] {$E_0$}; \draw[->,Ecol,very thick] (0,0) -- (E) node[midway,below right=-2] {$E_0 \cos\theta$}; %45\degree \draw pic[<-,"$\theta$"{anchor=-85},draw=black,angle radius=16,angle eccentricity=1] {angle = E--O--E0}; \end{tikzpicture} %% EXAMPLE %% Source: https://tex.stackexchange.com/questions/113900/draw-polarized-light %\begin{tikzpicture}[x=(\xangle:0.75cm), y=(90:1cm), z=(\zangle:1.5cm), % >=stealth, line cap=round, line join=round, % lines/.style={gray!50, thick}, % axis/.style={black, thick}, % plate/.style={fill, opacity=0.875}, % markers/.style={orange, thick}] % % \node [yslant=tan(\zangle), above=0.25cm, align=center,font=\small] at % (1,1,1.5){Left Handed \\ Circularly Polarized Light}; % % \draw [lines] (-1,-1,0) -- (-1,1,0) -- (1,1,0) -- (1,-1, 0) -- cycle; % \draw [lines] (1,0,0) \foreach \t in {0,5,...,355}{ % -- (cos \t, sin \t, 0) } -- cycle; % % \draw [lines] (1,1,0) -- (1,1,3.125); % \draw [lines] (-1,-1,0) -- (-1,-1,3.125); % \draw [axis, ->] (0,0,3.125) -- (0,0,0); % % \foreach \k [evaluate={% % \i=\k*5.625; % \j=\i>0 ? \i-5.625 : 0; % \a=90-\i; % \b=90-\j; % \c=int(mod(\k,4));}] % in {0,...,192}{ % \ifnum\c=0 % \draw [->] (0,0,\i/360) -- ++(cos \a, sin \a, 0); % \fi % \draw [red] (cos \a, sin \a, \i/360) -- (cos \b, sin \b, \j/360); % } % % \begin{scope}[shift={(0,0,3.125)}] % % \node [yslant=tan(\zangle), above=0.25cm, align=center,font=\small] at % (1,1,1.5){Linearly Polarized Light}; % % \begin{scope}[xscale=1.5, yscale=1.5] % \path [crystal!25, plate] % (-1,-1,0) -- (-1,1,0) -- (1,1,0) -- (1,-1,0) -- cycle; % \path [crystal!50, plate] % (-1,-1,0) -- (-1,-1,-0.125) -- (-1,1,-0.125) -- (-1,1, 0) -- cycle; % \path [crystal!75, plate] % (-1,1,0) -- (-1,1,-0.125) -- (1,1,-0.125) -- (1,1, 0) -- cycle; % \node [yslant=tan(\xangle), text=crystal!50, below, font=\small] at % (-1.125,-1,0){Quarter Wave Plate}; % \end{scope} % % \draw [markers] (0,1) -- (0,-1) (-0.5,0) -- (0.5,0); % \draw [lines] (1,1,0) -- (1,1,3); % \draw [lines] (-1,-1,0) -- (-1,-1,3); % % \draw [axis] (0,0,0) -- (0,0,3); % % \foreach \k [evaluate={% % \i=\k*5.625; \j=\i>0 ? \i-5.625 : 0; % \a=90-\i; % \b=90-\j; % \c=int(mod(\k,4)==0 && sin \a != 0); % \d=int(\k+1/4);}] in {0,...,192}{ % \ifodd\d % \ifnum\c=1 % \draw [->] (0,0,\i/360) -- ++(sin \a, sin \a, 0); % \fi % \draw [red] (sin \a, sin \a, \i/360) -- (sin \b, sin \b, \j/360); % \else % \draw [red] (sin \a, sin \a, \i/360) -- (sin \b, sin \b, \j/360); % \ifnum\c=1 % \draw [->] (0,0,\i/360) -- ++(sin \a, sin \a, 0); % \fi % \fi % } % \end{scope} % % \begin{scope}[shift={(0,0,6.125)}] % % \node [yslant=tan(\zangle), above=0.25cm, align=center,font=\small] % at (1,1,1.5){Unpolarized Light}; % % \begin{scope}[xscale=1.5, yscale=1.5] % \path [crystal!25, plate] % (-1,-1,0) -- (-1,1,0) -- (1,1,0) -- (1,-1, 0) -- cycle; % \path [crystal!50, plate] % (-1,-1,0) -- (-1,-1,-0.0625) -- (-1,1,-0.0625) -- (-1,1, 0) -- % cycle; % \path [crystal!75, plate] % (-1,1,0) -- (-1,1,-0.0625) -- (1,1,-0.0625) -- (1,1, 0) -- cycle; % \node [yslant=tan(\xangle), text=crystal!50, below, font=\small] at % (-1,-1,0){Linear Polarizer}; % \end{scope} % % \draw [markers] (-1.25,-1.25) -- (1.25,1.25); % \draw [lines] (0,1.414,0) -- (0,1.414,2); % \draw [lines] (1.414,0,0) -- (1.414,0,3); % \draw [lines] (1,1,0) -- (1,1,1); % \draw [lines] (-1,-1,0) -- (-1,-1, 0.5); % \draw [axis] (0,0,0) -- (0,0,3); % % \foreach \k [evaluate={% % \i=\k*5.625; \j=\i>0 ? \i-5.625 : 0; % \a=90-\i; % \b=90-\j; % \c=int((mod(\k,4)==0 && sin \a != 0) || (\k==65) || (\k==129)); % \d=int(\k+1/4); % \r=(\k>64) ? 1.414 : 1; % \xa=(\k > 64) && (\k < 129) ? 0 : sin(\a)*\r; % \xb=(\k > 64) && (\k < 129) ? 0 : sin(\b)*\r; % \ya=(\k < 129) ? sin(\a)*\r : 0; % \yb=(\k < 129) ? sin(\b)*\r : 0; % }] in {0,...,192}{ % \ifodd\d % \ifnum\c=1 % \draw [->] (0,0,\i/360) -- ++(\xa, \ya, 0); % \fi % \draw [red] (\xa, \ya, \i/360) -- (\xb, \yb, \j/360); % \else % \draw [red] (\xa, \ya, \i/360) -- (\xb, \yb, \j/360); % \ifnum\c=1 % \draw [->] (0,0,\i/360) -- ++(\xa, \ya, 0); % \fi % \fi % } % % \draw [ultra thick, ->] (0,0,3.5) -- (0,0,3); % % \end{scope} % %\end{tikzpicture} \end{document}
Click to download: optics_polarization.tex • optics_polarization.pdf
Open in Overleaf: optics_polarization.tex