History timeline and energy scale of particle physics (including the GUT and Planck scale, and a possible particle desert). Inspiration for the chronology of particle discoveries: particleadventure.org and Wikipedia.
Edit and compile if you like:
% Author: Izaak Neutelings (July 2017) % Timelines & energy scales of particle physics \documentclass[border=1pt,tikz]{standalone} \usepackage{amsmath} % for \dfrac \usepackage{tikz} \tikzset{>=latex} % for LaTeX arrow head \begin{document} % TIMELINE - simple test \begin{tikzpicture}[] % limits \newcount\yearOne; \yearOne=1900 \def\w{15} % width of axes \def\n{4} % number of decades \def\lt{0.40} % ten tick length \def\lf{0.36} % five tick length \def\lo{0.30} % one tick length % help functions \def\yearLabel(#1,#2){\node[above] at ({(#1-\yearOne)*\w/\n/10},\lt) {#2};} \def\yearArrowLabel(#1,#2,#3,#4){ \def\xy{{(#1-\yearOne)*\w/\n/10}}; \pgfmathparse{int(#2*100)}; \ifnum \pgfmathresult<0 \def\yyp{{(\lt*(0.90+#2))}}; \def\yyw{{(\yyp-\lt*#3)}} \draw[<-,thick,black,align=center] (\xy,\yyp) -- (\xy,\yyw) node[below,black] at (\xy,\yyw) {#4}; \else \def\yyp{{(\lt*(0.10+#2)}}; \def\yyw{{(\yyp+\lt*#3)}} \draw[<-,thick,black,align=center] (\xy,\yyp) -- (\xy,\yyw) node[above,black] at (\xy,\yyw) {#4}; \fi} % axis %\draw[thick] (0,0) -- (\w,0); \draw[->,thick] (-\w*0.03,0) -- (\w*1.03,0); % ticks \foreach \tick in {0,1,...,\n}{ \def\x{{\tick*\w/\n}} \def\year{\the\numexpr \yearOne+\tick*10 \relax} \draw[thick] (\x,\lt) -- (\x,-\lt) % ten tick node[below] {\year}; \ifnum \tick<\n \draw[thick] ({(\x+\w/\n/2)},0) -- ({(\x+\w/\n/2)},\lf); % five tick \foreach \ticko in {1,2,3,4,6,7,8,9}{ \def\xo{{(\x+\ticko*\w/\n/10)}} \draw[thick] (\xo,0) -- (\xo,\lo); % one tick }\fi } % label \yearLabel(1923,lol) \yearArrowLabel(1932.2, 1.0,1.0,foo) \yearArrowLabel(1937.2, 1.0,1.5,foo bar) \yearArrowLabel(1907.5, 0.0,1.5,small) \yearArrowLabel(1915.6,-1.0,2.0,\small this is small a sentence) \yearArrowLabel(1924.2,-1.2,1.2,$p\lambda=h$) \end{tikzpicture} % LOGARITHMIC SCALE \large \begin{tikzpicture}[] % limits \newcount\nOne; \nOne=-10 \def\w{18} % width of axes \def\n{29} % number of decades \def\noffset{1} % offset labels \def\nskip{3} % skip number \def\la{2.00} % arrow length \def\lt{0.20} % tick length \def\ls{0.15} % tick length (skipped) % help functions \def\myx(#1){{(#1-\nOne)*\w/\n}} \def\arrowLabel(#1,#2,#3,#4){ \def\xy{(#1-\nOne)*\w/\n}; \pgfmathparse{int(#2*100)}; \ifnum \pgfmathresult<0 \def\yyp{{(\lt*(-0.10+#2))}}; \def\yyw{{(\yyp-\la*\lt*#3)}} \draw[<-,thick,black!50!blue,align=center] (\myx(#1),\yyp) -- (\myx(#1),\yyw) node[below,black!80!blue] {#4}; %,fill=white \else \def\yyp{{(\lt*(0.10+#2)}}; \def\yyw{{(\yyp+\la*\lt*#3)}} \draw[<-,thick,black!50!blue,align=center] (\myx(#1),\yyp) -- (\myx(#1),\yyw) node[above,black!80!blue] {#4}; \fi} \def\arrowLabelRed(#1,#2,#3,#4){ \def\yyp{{(\lt*(-0.10+#2))}}; \def\yyw{{(\yyp-\la*\lt*#3)}} \fill[red,radius=2pt] (\myx(#1),0) circle; \draw[<-,thick,black!25!red,align=center] (\myx(#1),\yyp) -- (\myx(#1),\yyw) node[below,black!40!red] {\strut#4}; %,fill=white } % axis \draw[->,thick] (-\w*0.03,0) -- (\w*1.06,0) node[right=4pt,below=6pt] {[GeV]}; % ticks \foreach \tick in {0,1,...,\n}{ \def\x{{\tick*\w/\n}} \def\dec{\the\numexpr \nOne+\tick \relax} \pgfmathparse{Mod(\tick-\noffset,\nskip)==0?1:0} \ifnum\pgfmathresult>0 \draw[thick] (\x,\lt) -- (\x,-\lt) % ten tick node[below] {$10^{\dec}$}; % label \else \draw[thick] (\x,\ls) -- (\x,-\ls); % ten tick \fi } % label \arrowLabel(-9.52,1.2,2.5,neutrino) % log(0.0000000003)=-9.523 (0.3 eV) \arrowLabel(-3.29,1.2,1.5,electron) % log(0.000510)=-3.292 (0.510 MeV) \arrowLabel(-0.03,1.2,2.5,proton) % log(0.938)=-0.03 \arrowLabel( 1.90,1.2,5.7,$\text{W}^\pm$, $\text{Z}$) % log(80)=1.90, log(90)=1.95 \arrowLabel( 2.25,1.2,2.4,\qquad Higgs\\\quad top) % log(125)=2.10, log(175)=2.24 \arrowLabel( 4.15,-1.2,1.6,LHC) % log(1400)=4.146 \arrowLabel(16.00,1.2,2.5,GUT) % 10^25 eV = 10^16 GeV \arrowLabel(19.09,1.2,4.0,Planck) % Planck % quantum gravity % 1.22x10^19 . GeV % low mass \arrowLabelRed(1.477,-1.2,3.0,X) % ln(30) = 1.477 \arrowLabelRed(2.230,-1.2,3.0,$\text{B}'$) % ln(170) = 2.230 % stretch \draw[<->,thick,black!20!orange] ({(2.6-\nOne)*\w/\n},0.95) -- ({(15.6-\nOne)*\w/\n},0.95) node[midway,below=1pt] {particle desert ?} node[midway,above=1pt] {new physics ?}; \end{tikzpicture} % TIMELINE - particle physics % sources: http://web.ihep.su/dbserv/compas/src/ % http://www.particleadventure.org/other/history/ % https://en.wikipedia.org/wiki/Timeline_of_particle_discoveries \large \begin{tikzpicture}[] %[minimum height=10pt, text height=10pt,text depth=10pt, % limits \newcount\yearOne; \yearOne=1900 \newcount\yoffset; \def\w{18} % width of axes \def\n{4} % number of decades \def\lt{0.40} % ten tick length \def\lf{0.36} % five tick length \def\lo{0.30} % one tick length \def\lext{0.07} % left extension of axes \def\rext{1.045} % left extension of axes % help functions \def\yearLabel(#1,#2,#3){\node[above,black!60!blue] at ({(#1-\yearOne)*\w/\n/10},{\lt*#2}) {#3};} \def\yearArrowLabel(#1,#2,#3,#4){ \def\xy{{(#1-\yearOne)*\w/\n/10}}; \pgfmathparse{int(#2*100)}; \ifnum \pgfmathresult<0 % below \def\yyp{{(\lt*(0.90+#2))}}; \def\yyw{{(\yyp-\lt*#3)}} \draw[<-,thick,black!50!blue,align=center] (\xy,\yyp) -- (\xy,\yyw) node[below,black!80!blue] at (\xy,\yyw) {\strut #4}; \else % under \def\yyp{{(\lt*(0.10+#2)}}; \def\yyw{{(\yyp+\lt*#3)}} \draw[<-,thick,black!60!blue,align=center] (\xy,\yyp) -- (\xy,\yyw) node[above] at (\xy,\yyw) {#4}; \fi} \def\yearArrowLabelRed(#1,#2,#3,#4){ \def\xy{{(#1-\yearOne)*\w/\n/10}}; \pgfmathparse{int(#2*100)}; \def\yyp{{(\lt*(0.90+#2))}}; \def\yyw{{(\yyp-\lt*#3)}} \fill[red,radius=2pt] (\xy,0) circle; \draw[<-,thick,black!25!red,align=center] (\xy,\yyp) -- (\xy,\yyw) node[below,black!40!red] at (\xy,\yyw) {\strut #4}; } %---------------% % 1900 - 1940 % %---------------% % axis \draw[thick] (-\w*0.07,0) -- (\w*\rext,0); % ticks \foreach \tick in {0,1,...,\n}{ \def\x{{\tick*\w/\n}} \def\year{\the\numexpr \yearOne+\tick*10 \relax} \draw[thick] (\x,-\lt) -- (\x,\lt) % ten tick node[above] {\year}; \ifnum \tick<\n \draw[thick] ({(\x+\w/\n/2)},0) -- ({(\x+\w/\n/2)},\lf); % five tick \foreach \ticko in {1,2,3,4,6,7,8,9}{ \def\xo{{(\x+\ticko*\w/\n/10)}} \draw[thick] (\xo,0) -- (\xo,\lo); % one tick }\fi } % extra ticks \draw[thick] (-1*\w/\n/10,0) -- (-1*\w/\n/10,\lo); \draw[thick] (-2*\w/\n/10,0) -- (-2*\w/\n/10,\lo); \draw[thick] ({\w+\w/\n/10},0) -- ({\w+\w/\n/10},\lo); % labels \yearArrowLabel(1897.83,-1.2,1.5, $\text{e}^-$) % electron 10/1897 Thomson \yearArrowLabel(1905.25,-1.2,1.5, $\gamma$) % photon 03/1905 Einstein \yearArrowLabel(1913.17, 1.2,1.5, atom nucleus) % nucleus 02/1913 Rutherford \yearArrowLabel(1917.50,-1.2,1.5, $\text{p}^+$) % proton 1917 Rutherford (Philos. Mag., Ser. 6, Vol. 37, 581 (1919)) \yearArrowLabel(1932.50, 1.2,1.5, anti-matter) % anti-matter \yearArrowLabel(1932.50,-1.2,1.5, $\text{e}^+$\\ % positron 1932 Anderson $\text{n}^0$) % neutron 1932 Chadwick \yearArrowLabel(1936.50,-1.2,1.5, $\mu^\pm$) % muon 1936 %---------------% % 1940 - 1980 % %---------------% \yearOne=1940; \advance\yoffset by 120 \begin{scope}[yshift=-\yoffset] % axis \draw[thick] (-\w*\lext,0) -- (\w*\rext,0); % ticks \foreach \tick in {0,1,...,\n}{ \def\x{{\tick*\w/\n}} \def\year{\the\numexpr \yearOne+\tick*10 \relax} \draw[thick] (\x,-\lt) -- (\x,\lt) % ten tick node[above] {\year}; \ifnum \tick<\n \draw[thick] ({(\x+\w/\n/2)},0) -- ({(\x+\w/\n/2)},\lf); % five tick \foreach \ticko in {1,2,3,4,6,7,8,9}{ \def\xo{{(\x+\ticko*\w/\n/10)}} \draw[thick] (\xo,0) -- (\xo,\lo); % one tick }\fi } % extra ticks \draw[thick] (-1*\w/\n/10,0) -- (-1*\w/\n/10,\lo); \draw[thick] (-2*\w/\n/10,0) -- (-2*\w/\n/10,\lo); \draw[thick] ({\w+\w/\n/10},0) -- ({\w+\w/\n/10},\lo); % labels \yearArrowLabel(1947.42,-1.2,1.5, $\pi^\pm$\\ % pions 05/1947 Lattes, Muirhead, Occhialini, Powell $\text{K}^0$) % neutral kaons 12/1947 Rochester & Butler, Nature, 160, 855 \yearArrowLabel(1949.00,-1.2,1.5, $\text{K}^\pm$) % kaons 12/1949 Powell, Fowler, Perkins, Nature, 163, 82 \yearArrowLabel(1950.10,-2.2,1.8, \,$\pi^0$) % pi0 01/1950 Caltech \yearArrowLabel(1952.00,-1.2,1.5, $\Lambda^0$\\ % Lambda0 12/1950 Hopper, Biswas, Phys. Rev. 80, 1099 $\Delta$) % 1952 Anderson, Fermi, (Chicago Cyclotron), Phys. Rev., 85, 936 % 1956 Ashkin (Rochester cyclotron), Phys. Rev., 101, 1149 % Sigma+ 1953 Bonetti, Nuovo Cimento, 10, 1; Danysz, Pniewski, Phil. Mag., 44, 348; Cosmotron Brookhaven, Phys. Rev., 93, 109 % Xi- "negative hyperon" 1954 Cowan (Caltech), Phys. Rev., 94, 161 \yearArrowLabel(1953.20,-1.2,1.5,\,\,$\Sigma^\pm$\\\,\,$\Xi^-$) \yearArrowLabel(1955.92,-1.2,1.5,$\overline{\text{p}}$\,) % 11/1955 Chamberlain, Segrè (Bevatron) Phys. Rev. 100, 947 \yearArrowLabel(1956.75,-1.2,1.5,$\nu_\text{e}$\\$\overline{\text{n}}$) % 09/1956 Reines, Cowan, Nature, 178, 446 \yearArrowLabel(1957.80,-1.2,1.5,$\Sigma^0$) % \yearArrowLabel(1959.00,-1.2,1.5,$\Xi^0$) % Xi 1959 (1964 Brookhaven) % 1960 Sigma*(1385) Phys. Rev. Lett., 5, 520 \yearArrowLabel(1961.20,-1.2,1.5, $\rho$\\ % 1961 Erwin (Cosmotron) Phys. Rev. Lett., 6, 628 $\omega$\\ % 1961 Maglic, Alvarez, Phys. Rev. Lett., 7, 178 $\eta$\\ % 1961 Pevsner, Phys. Rev. Lett., 7, 421 $\text{K}^*$) % 1961 Alston, Phys. Rev. Lett., 6, 300, 1962 Phys. Rev. Lett., 9, 330 % 19.. strangeness "associated-production", Pais % 1962 Eightfold Way, Gell-Man \yearArrowLabel(1962.58,-1.2,1.5,\vspace{2pt} $\nu_\mu$\\ % 07/1962, Ledderman, Danby, Phys. Rev. Lett. 9, 36 $\phi$) % 1962, Pjerrou Phys. Rev. Lett., 9, 114, Bertanza, Phys. Rev. Lett., 9, 180 % 1962 f particle? \yearArrowLabel(1964.10,-1.2,1.5, $\alpha_2$\\ % \,$\eta^*$\\ % \,\,$\Omega^-$) % 02/1964, Barnes, Brookhaven, Phys. Rev. Lett. 12, 204 \yearArrowLabel(1964.50, 1.2,1.2, quark model\\ \small{up, down, strange}) % Gell-Mann % 1967 Steven Weinberg, Abdus Salam: electroweak unification \yearArrowLabel(1974.50, 1.2,1.2, \qquad\qquad Standard Model\\ \small{charm}) % charm % 1974 November Revolution \yearArrowLabel(1974.50,-1.2,1.5,$\text{J/}\Psi$\,\,\\$\Psi'$\\\,$\Psi''$) % %\yearLabel(1973,4.0,Standard Model) % Standard Model % tau 1975 Perl, Abrams, Phys. Rev. Lett. 35, 1489 \yearArrowLabel(1976.00,-1.2,1.5,$\tau$\\$\chi_\text{c}$) % \yearArrowLabel(1976.90,-1.2,1.5, $\text{D}$ ) % 1976 SLAC \yearArrowLabel(1977.75, 1.2,1.2, \small{bottom} ) % bottom \yearArrowLabel(1977.75,-1.2,1.5,$\Upsilon$\\\,$\Upsilon'$\\\,\,$\Upsilon''$\\\small\ldots) % Fermilab \yearArrowLabel(1979.65,-1.2,1.5,$\Lambda_\text{c}$\\$\Sigma_\text{c}$) % \end{scope} %---------------% % 1980 - 2020 % %---------------% \yearOne=1980; \advance\yoffset by 130 \begin{scope}[yshift=-\yoffset] % axis \draw[->,thick] (-\w*\lext,0) -- (\w*1.06,0); % ticks \foreach \tick in {0,1,...,\n}{ \def\x{{\tick*\w/\n}} \def\year{\the\numexpr \yearOne+\tick*10 \relax} \draw[thick] (\x,-\lt) -- (\x,\lt) % ten tick node[above] {\year}; \ifnum \tick<\n \draw[thick] ({(\x+\w/\n/2)},0) -- ({(\x+\w/\n/2)},\lf); % five tick \foreach \ticko in {1,2,3,4,6,7,8,9}{ \def\xo{{(\x+\ticko*\w/\n/10)}} \draw[thick] (\xo,0) -- (\xo,\lo); % one tick }\fi } % extra ticks \draw[thick] (-1*\w/\n/10,0) -- (-1*\w/\n/10,\lo); \draw[thick] (-2*\w/\n/10,0) -- (-2*\w/\n/10,\lo); \draw[thick] ({\w+\w/\n/10},0) -- ({\w+\w/\n/10},\lo); % labels \yearArrowLabel(1980.40,-1.2,1.5, $\eta_\text{c}$ ) % \yearArrowLabel(1981.30,-1.2,1.5, B ) % \yearArrowLabel(1983.05,-1.2,1.5, \mbox{$\text{W}^\pm$\hspace{4pt}}\\ $\text{D}_\text{s}$\\ $\Xi_\text{c}$ ) % \yearArrowLabel(1984.00,-1.2,1.5, \mbox{\hspace{12pt}$\text{Z}^0$} ) % \yearArrowLabel(1991.60,-1.2,1.5,$\text{B}_\text{s}$\\$\Lambda_\text{b}$) % Bs Fermilab \yearArrowLabel(1995.30,-1.2,1.5,t) % \yearArrowLabel(1995.30, 1.2,1.2, \small{top} ) % \yearArrowLabel(2000.60,-1.2,1.5,$\nu_\tau$) % \yearArrowLabel(2012.50,-1.2,1.5,H) % %\yearArrowLabelRed(2017.7,-1.2,1.5,X\\\,$\text{B}'$) % low mass \yearArrowLabelRed(2020.9,-1.2,1.5,LQ) % leptoquark \end{scope} \end{tikzpicture} \end{document}
Click to download: timeline.tex • timeline.pdf
Open in Overleaf: timeline.tex