The Maxwell-Boltzmann distribution plotted at different temperatures reveals that the most probable velocity $v_p$ of ideal gas particles scales with the square root of temperature.
Edit and compile if you like:
% The Maxwell-Boltzmann distribution plotted at different temperatures reveals that the most probable velocity v_p of ideal gas particles scales with the square root of temperature. \documentclass{standalone} \usepackage{pgfplots,siunitx} \pgfplotsset{compat=newest} \def\kB{1.38e-23} % Boltzmann constant \def\mu{1.66e-27} % unified atomic mass unit/Dalton (symbols: m_u or Da) \def\maxwellboltzmann#1{4 * pi * (\mu / (2 * pi * \kB * #1))^(3/2) * x^2 * exp(-\mu * x^2 / (2 * \kB * #1))} \begin{document} \begin{tikzpicture} \begin{axis}[ domain = 0:8000, xlabel = {$v$ [\si{\metre\per\second}]}, ylabel = $P(v)$, smooth, thick, axis lines = left, every tick/.style = {thick}, ] \addplot[color=red,samples=100]{\maxwellboltzmann{100}}; \addplot[color=yellow]{\maxwellboltzmann{300}}; \addplot[color=blue]{\maxwellboltzmann{1000}}; \legend{\SI{100}{\kelvin}, \SI{300}{\kelvin}, \SI{1000}{\kelvin}} \end{axis} \end{tikzpicture} \end{document}
Click to download: maxwell-boltzmann-dist.tex
Open in Overleaf: maxwell-boltzmann-dist.tex
This file is available on tikz.netlify.app and on GitHub and is MIT licensed.
See more on the author page of Janosh Riebesell..