Graphical interpretation of complex roots

Graphical interpretation of the complex roots of a quadratic equation.
Inspired by this post and this paper.

complex_roots-001.pngcomplex_roots-002.pngcomplex_roots-003.pngcomplex_roots-004.pngcomplex_roots-005.pngcomplex_roots-006.pngcomplex_roots-007.png

Edit and compile if you like:

% Author: Izaak Neutelings (April 2022)
% Inspiration:
% https://math.stackexchange.com/questions/401745/help-understanding-complex-roots
% https://doi.org/10.5539/jmr.v10n6p91
\documentclass[border=3pt,tikz]{standalone}
\usepackage{amsmath}
\usepackage{tikz}
\usepackage{physics}
\usepackage[outline]{contour} % glow around text
\contourlength{1.0pt}
\usetikzlibrary{3d}
\tikzset{>=latex} % for LaTeX arrow head
\usepackage{xcolor}
\colorlet{myblue}{blue!75!black}
\colorlet{mydarkblue}{blue!50!black}
\colorlet{myred}{red!65!black}
\colorlet{mydarkred}{red!40!black}
\tikzstyle{xline}=[myblue,very thick]
\tikzstyle{round xline}=[xline,line cap=round]
\tikzstyle{area}=[xline,fill=myblue!20,fill opacity=0.5]
\tikzstyle{yzp}=[canvas is zy plane at x=0]
\tikzstyle{xzp}=[canvas is xz plane at y=0]
\tikzstyle{xyp}=[canvas is xy plane at z=0]
\def\tick#1#2{\draw[thick] (#1) ++ (#2:0.11) --++ (#2-180:0.22)}
\def\N{50}
\begin{document}
% ONE REAL solutions
\begin{tikzpicture}[scale=1]
\message{^^JReal solutions}
\def\xmin{-0.4} % x axis minimum
\def\xmax{3.8} % x axis maximum
\def\ymin{-0.4} % y axis minimum
\def\ymax{2.7} % y axis maximum
\def\tmax{1.85} % parameter t maximum (upper)
\def\A{0.7} % parabola amplitude
\def\a{1.75} % parabola minimum
 
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Click to download: complex_roots.texcomplex_roots.pdf
Open in Overleaf: complex_roots.tex

Leave a Reply

Your email address will not be published.