Illustration of a Gaussian surface around on plate of a charged capacitor to understand the displacement current appearing in Maxwell’s equations.
% Author: Izaak Neutelings (February 2020) \documentclass[border=3pt,tikz]{standalone} \usepackage{physics} \usepackage{xcolor} \usetikzlibrary{decorations.markings} \tikzset{>=latex} % for LaTeX arrow head \colorlet{Ecol}{orange!90!black} \colorlet{Bcol}{violet!90} \colorlet{Icol}{blue!70!black} \colorlet{gausscol}{green!40!black} \colorlet{gausscol2}{green!45!blue} \tikzstyle{current}=[->,Icol,thick] \colorlet{pluscol}{red!60!black} \colorlet{minuscol}{blue!60!black} \tikzstyle{anode}=[top color=red!20,bottom color=red!50,shading angle=20] \tikzstyle{cathode}=[top color=blue!20,bottom color=blue!40,shading angle=20] \tikzstyle{gauss surf}=[gausscol,top color=green!2,bottom color=green!80!black!70,shading angle=5,fill opacity=0.4] \tikzstyle{metal}=[top color=black!15,bottom color=black!25,middle color=black!20,shading angle=10] \tikzstyle{mydashes}=[dash pattern=on 1 off 1] \tikzset{ EFieldLine/.style={thick,Ecol,line cap=round,decoration={markings, mark=at position #1 with {\arrow{latex}}}, postaction={decorate}}, BFieldLine/.style={thick,Bcol,postaction={decorate},decoration={markings, mark=at position #1 with {\arrow{latex}}, mark=at position #1+0.5 with {\arrow{latex}}}}, EFieldLine/.default=0.5, BFieldLine/.default=0.4} \usetikzlibrary{3d} \begin{document} % CAPACITOR 3D - displacement current derivation \begin{tikzpicture}[xscale=0.42] \def\RC{1.2} % radius capacitor \def\RW{0.1*\RC} % radius wire \def\RA{1.6} % radius ampere loop \def\D{2.6*\RA} % distance between plates \def\T{0.4} % plate thickness \def\L{2*\RA} % wire length \def\NE{5} % number of electric field lines % CATHODE WIRE \draw[metal] (\D+\T,\RW) --++ (\L,0) arc (90:-90:\RW) --++ (-\L,0); % CATHODE \draw[cathode,top color=blue!90!black!30,bottom color=blue!80!black!50] (\D,\RC) --++ (\T,0) arc (90:-90:\RC) --++ (-\T,0); \draw[cathode] (\D,0) circle (\RC); % ELECTRIC FIELD \foreach \i [evaluate={\y=-\RC+(\i-0.5)*(2*\RC)/\NE);}] in {1,...,\NE}{ \draw[EFieldLine={0.68},very thick] (0,\y) --++ (\D,0); } \node[Ecol,above] at (0.59*\D,0.9*\RC) {$\vb{E}$}; % ANODE \draw[anode,top color=red!90!black!20,bottom color=red!80!black!50] (-\T,\RC) --++ (\T,0) arc (90:-90:\RC) --++ (-\T,0); \draw[anode] (-\T,0) circle (\RC); % ANODE WIRE LEFT \draw[metal] (-\T,\RW) arc (90:-90:\RW) --++ (-\L,0) arc (-90:90:\RW) -- cycle; % SURFACE \draw[gauss surf,very thin,fill opacity=0.3,gausscol2, top color=gausscol2!20,bottom color=gausscol2!80!black!70] %(-\T-\L,\RA) arc (90:-90:{1.2*(\T+\L+\RA)} and {\RA}) arc (-90:90:\RA); (-\T-\L,1.006*\RA) to[out=-4,in=90,looseness=0.7] (\T+\RA,0) to[out=-90,in=4,looseness=0.7] (-\T-\L,-1.006*\RA) arc (-90:90:1.006*\RA); \draw[gauss surf,thick] (-\T-\L,0) circle (\RA); \node[gausscol] at (-\T-\L-0.7*\RA,\RA) {$C$}; \node[gausscol!70] at (-\T-\L-0.6*\RA,-1.05*\RA) {$S_1$}; \node[gausscol2!70] at (-0.5*\RA,-1.05*\RA) {$S_2$}; \node[pluscol] at (0.7*\RC,-1.15*\RC) {$+Q$}; \node[minuscol] at (\D+0.7*\RC,-1.15*\RC) {$-Q$}; % ANODE WIRE RIGHT \draw[metal] (-\T-\L,\RW) arc (90:-90:\RW) --++ (-\L,0) arc (-90:90:\RW) -- cycle; \draw[mydashes,black!80,very thin] (-\T-\L,0.94*\RW) arc (90:270:0.94*\RW); \draw[metal] (-\T-2*\L,0) circle (\RW); % CURRENT \draw[current] (-\T-1.95*\L,1.7*\RW) --++ (0.7*\L,0) node[pos=0.4,above=-1] {$I$}; \draw[current] (\D+\RC+0.15*\L,1.7*\RW) --++ (0.7*\L,0) node[pos=0.4,above=-1] {$I$}; \end{tikzpicture} % CAPACITOR 3D - displacement current derivation (cylinder) \begin{tikzpicture}[xscale=0.3] \def\RC{1.2} % radius capacitor \def\RW{0.1*\RC} % radius wire \def\RA{1.3} % radius ampere loop \def\D{3.5*\RA} % distance between plates \def\T{0.4} % plate thickness \def\L{2.6*\RA} % wire length \def\NE{5} % number of electric field lines \def\Sx{0.3*\D} % x position S2 % CATHODE WIRE \draw[metal] (\D+\T,\RW) --++ (\L,0) arc (90:-90:\RW) --++ (-\L,0); % CATHODE \draw[cathode,top color=blue!90!black!30,bottom color=blue!80!black!50] (\D,\RC) --++ (\T,0) arc (90:-90:\RC) --++ (-\T,0); \draw[cathode] (\D,0) circle (\RC); % ELECTRIC FIELD \foreach \i [evaluate={\y=-\RC+(\i-0.5)*(2*\RC)/\NE);}] in {1,...,\NE}{ \draw[EFieldLine={0.76},very thick] (0,\y) --++ (\D,0); } \node[Ecol,above] at (0.75*\D,0.88*\RC) {$\vb{E}$}; % SURFACE S2 \draw[gauss surf,thick,fill opacity=0.2,gausscol2, top color=gausscol2!20,bottom color=gausscol2!80!black!70] (\Sx,0) circle (\RA); \foreach \i [evaluate={\y=-\RC+(\i-0.5)*(2*\RC)/\NE);}] in {1,...,\NE}{ \draw[Ecol,very thick,line cap=round] (0,\y) --++ (\Sx,0); } % ANODE \draw[anode,top color=red!90!black!20,bottom color=red!80!black!50] (-\T,\RC) --++ (\T,0) arc (90:-90:\RC) --++ (-\T,0); \draw[anode] (-\T,0) circle (\RC); % ANODE WIRE LEFT \draw[metal] (-\T,\RW) arc (90:-90:\RW) --++ (-\L,0) arc (-90:90:\RW) -- cycle; % SURFACE S1 \draw[gauss surf,draw=none,fill opacity=0.25] (\Sx-0.01,\RA) arc(90:-90:\RA) -- (-\T-\L,-\RA) arc(-90:90:\RA); \draw[gausscol,thin] (\Sx,\RA+0.007) -- (-\T-\L,\RA+0.007) (\Sx,-\RA-0.007) -- (-\T-\L,-\RA-0.007); \draw[gauss surf,thick] (-\T-\L,0) circle (\RA); \node[gausscol,left=0] at (-\T-\L,1.10*\RA) {$C_1$}; \node[gausscol2,right=-7] at (\Sx,1.14*\RA) {$C_2$}; %\node[gausscol!70] at (-\T-\L-0.6*\RA,-1.05*\RA) {$S_1$}; %\node[gausscol2!70] at (\Sx+0.2*\D,-1.05*\RA) {$S_2$}; \node[pluscol] at (-0.1*\D,-1.25*\RC) {$+Q$}; \node[minuscol] at (1.0*\D,-1.20*\RC) {$-Q$}; % ANODE WIRE RIGHT \draw[metal] (-\T-\L,\RW) arc (90:-90:\RW) --++ (-\L,0) arc (-90:90:\RW) -- cycle; \draw[mydashes,black!80,very thin] (-\T-\L,0.94*\RW) arc (90:270:0.94*\RW); \draw[metal] (-\T-2*\L,0) circle (\RW); % CURRENT \draw[current] (-\T-1.95*\L,1.7*\RW) --++ (0.8*\L,0) node[pos=0.4,above=-1] {$I$}; \draw[current] (\D+\RC+0.15*\L,1.7*\RW) --++ (0.8*\L,0) node[pos=0.4,above=-1] {$I$}; \end{tikzpicture} % CAPACITOR 3D - magnetic fields \begin{tikzpicture}[xscale=0.42] \def\RC{1.2} % radius capacitor \def\RW{0.1*\RC} % radius wire \def\RA{1.6} % radius ampere loop \def\D{2.6*\RA} % distance between plates \def\T{0.4} % plate thickness \def\L{2*\RA} % wire length \def\NE{4} % number of electric field lines \def\NB{2} % number of magnetic field lines % MAGNETIC FIELD LINES back \foreach \x in {-0.5*\D,0.5*\D,1.6*\D}{ \foreach \i [evaluate={\r=\i*\RA/\NB);}] in {1,...,\NB}{ \draw[BFieldLine={0.35}] (\x,0) circle (\r); } } % CATHODE WIRE \draw[metal] (\D+\T,\RW) --++ (\L,0) arc (90:-90:\RW) --++ (-\L,0); % CATHODE \draw[cathode,top color=blue!90!black!30,bottom color=blue!80!black!50] (\D,\RC) --++ (\T,0) arc (90:-90:\RC) --++ (-\T,0); \draw[cathode] (\D,0) circle (\RC); % ELECTRIC FIELD \foreach \i [evaluate={\y=-\RC+(\i-0.5)*(2*\RC)/\NE);}] in {1,...,\NE}{ \draw[EFieldLine={0.6},very thick] (0,\y) --++ (\D,0); } \node[Ecol,above] at (0.52*\D,0.78*\RC) {$\vb{E}$}; \node[Bcol,above] at (0.20*\D,0.80*\RA) {$\vb{B}$}; % ANODE \draw[anode,top color=red!90!black!20,bottom color=red!80!black!50] (-\T,\RC) --++ (\T,0) arc(90:-90:\RC) --++ (-\T,0); \draw[anode] (-\T,0) circle (\RC); % ANODE WIRE LEFT \draw[metal] (-\T,\RW) arc (90:-90:\RW) --++ (-\L,0) arc (-90:90:\RW) -- cycle; \draw[metal] (-\T-\L,0) circle (\RW); % SURFACE \node[pluscol] at (-0.1*\D,-1.2*\RC) {$+Q$}; \node[minuscol] at (1.0*\D,-1.2*\RC) {$-Q$}; % CURRENT \draw[current] (-\T-0.95*\L,1.7*\RW) --++ (0.6*\L,0) node[pos=0.6,above=-1] {$I$}; \draw[current] (\D+\RC+0.24*\L,1.7*\RW) --++ (0.6*\L,0) node[pos=0.35,above=-1] {$I$}; % MAGNETIC FIELD LINES front \foreach \x in {-0.5*\D,0.5*\D,1.6*\D}{ \foreach \i [evaluate={\r=\i*\RA/\NB);}] in {1,...,\NB}{ \draw[Bcol,thick] (\x,\r) arc(90:-90:\r); } } \end{tikzpicture} \end{document}
Click to download: displacement_current.tex • displacement_current.pdf
Open in Overleaf: displacement_current.tex
Loved it