Definition of polar coordinates, unit vectors, angles, line segments and radians.
For more figures of coordinate system, have a look at the “coordinates” tag.
Definition of polar coordinates and unit vectors on a circle with radius r:
Definition of the radial length of an angle subtended by a circle segment:
Summary of important angles and their radians on the unit circle:
Edit and compile if you like:
% Author: Izaak Neutelings (September 2020) \documentclass[border=3pt,tikz]{standalone} \usepackage{amsmath} \usepackage{tikz} \usepackage{physics} \usepackage{siunitx} \usepackage[outline]{contour} % glow around text \usetikzlibrary{angles,quotes} % for pic \contourlength{1.3pt} \tikzset{>=latex} % for LaTeX arrow head \usepackage{xcolor} \colorlet{veccol}{green!70!black} \colorlet{vcol}{green!70!black} \colorlet{xcol}{blue!85!black} \colorlet{projcol}{xcol!60} \colorlet{unitcol}{xcol!60!black!85} \colorlet{unitcol2}{vcol!60!black!85} \colorlet{myblue}{blue!70!black} \colorlet{myred}{red!70!black} \tikzstyle{vector}=[->,very thick,xcol] \tikzstyle{mydashed}=[dash pattern=on 2pt off 2pt] \def\tick#1#2{\draw[thick] (#1) ++ (#2:0.1) --++ (#2-180:0.2)} %0.03*\xmax \begin{document} % CIRCLE polar coordinates + vector \def\xmax{2.0} \def\ul{0.6} \def\R{1.7} \begin{tikzpicture} \def\ang{43} \coordinate (O) at (0,0); \coordinate (X) at (\xmax,0); \coordinate (R) at (\ang:\R); \draw[->,line width=0.9] (-\xmax,0) -- (1.08*\xmax,0) node[right] {$x$}; \draw[->,line width=0.9] (0,-\xmax) -- (0,1.08*\xmax) node[left] {$y$}; \node[fill=black,circle,inner sep=0.9] (R') at (R) {}; \node[above right] at (R) {$(x,y)=(r;\theta)$}; \draw[vector] (O) -- (R') node[midway,left=5,above right=0] {$\vb{r}$}; \draw pic[->,"$\theta$",draw=black,angle radius=21,angle eccentricity=1.2] {angle=X--O--R}; \draw (O) circle (\R); \draw[dashed] (R) -- ({\R*cos(\ang)},0); \draw[dashed] (R) -- (0,{\R*sin(\ang)}); \draw[vector,<->,unitcol] (\ul,0) node[scale=1,left=4,below right=-3] {$\vu{x}$} -- (O) -- (0,\ul) node[scale=1,below=4,above left=-3] {$\vu{y}$}; \draw[vector,<->,unitcol2] %,line cap=round (\ang:\ul) node[scale=1,left=0,above left=-3] {$\vu{r}$} -- (O) -- (\ang+90:\ul) node[scale=1,left=-3] {$\vu*{\theta}$}; \draw[vector,->,unitcol2,line cap=round] (R) --++ (\ang+90:\ul) node[scale=1,above left=-3] {$\vu*{\theta}$}; %\draw[thick] ({\R*cos(\ang)},0.1) --++ (0,-0.2) node[scale=0.9,below=-1] {$r$}; %\draw[thick] (0.1,{\R*sin(\ang)}) --++ (0,-0.2) node[scale=0.9,left=-1] {$r$}; %\draw[thick] (\R,0.1) --++ (0,-0.2) node[scale=0.9,below=-1] {\contour{white}{$r$}}; %\draw[thick] (0.1,\R) --++ (-0.2,0) node[scale=0.9,left=-1] {\contour{white}{$r$}}; \tick{\R,0}{90} node[below=-1] {\contour{white}{$r$}}; \tick{0,\R}{ 0} node[left=-1] {\contour{white}{$r$}}; \end{tikzpicture} % CIRCLE arc segment \begin{tikzpicture} \def\R{1.7} \def\ang{55} \coordinate (O) at (0,0); \coordinate (X) at (\R,0); \coordinate (R) at (\ang:\R); %\draw[vector] (O) -- (R) node[midway,right=4,above left=0] {$\vb{r}$}; \draw[dashed] (O) -- (X) node[midway,below right=0] {$r$}; \draw[dashed] (O) -- (R) node[midway,right=4,above left=0] {$r$}; \draw pic[->,"$\Delta\theta$",draw=black,angle radius=20,angle eccentricity=1.5] {angle=X--O--R}; \draw (O) circle (\R); \draw[red!80!black,very thick,line cap=round] (X) arc (0:\ang:\R) node[midway,above right=-2] {$\Delta s$}; %\draw[dashed] (R) -- ({\R*cos(\ang)},0); %\draw[dashed] (R) -- (0,{\R*sin(\ang)}); \end{tikzpicture} % CIRCLE unit circle \begin{tikzpicture} \def\xmax{2.2} \def\ul{0.6} \def\R{2.0} \def\ang{43} \coordinate (O) at (0,0); \coordinate (X) at (\xmax,0); \coordinate (R) at (\ang:\R); % AXIS \draw[->,line width=0.9] (-\xmax,0) -- (1.08*\xmax,0) node[right] {$x$}; \draw[->,line width=0.9] (0,-\xmax) -- (0,1.08*\xmax) node[left] {$y$}; %\node[fill=black,circle,inner sep=0.9] (R') at (R) {}; %\node[above right] at (R) {$(x,y)=(r;\theta)$}; \draw[blue!60!black] (O) circle (\R); \def\tick#1#2{\draw[blue!40!black,thick] (#1) ++ (#2:0.1) --++ (#2-180:0.2)} %0.03*\xmax \def\axis#1#2{ \node[red!70!black,fill=white,inner sep=1,scale=0.70] at (#1:0.5*\R) {\SI{#1}{\degree}}; \node[red!60!black,fill=white,inner sep=1,scale=0.82] at (#1:0.8*\R) {#2}; } \def\line#1#2#3#4#5{ \draw[mydashed,red!50!black] (#1:\R) -- (O); \node[red!70!black,fill=white,inner sep=0,rotate=#2,scale=0.8] at (#1:0.5*\R) {\SI{#1}{\degree}}; \node[red!60!black,fill=white,inner sep=0,rotate=#2,scale=0.9] at (#1:0.8*\R) {#4}; \node[blue!40!black,anchor=#3,scale=0.9] at (#1:\R) {#5}; %#1-180 %sign(#2)*(90-abs(#2)) %40 \fill[blue!40!black] (#1:\R) circle (0.04); } \tick{ \R,0}{90} node[scale=0.9,below=-1] {\contour{white}{$1$}}; \tick{0, \R}{ 0} node[scale=0.9,left=-1] {\contour{white}{$1$}}; \tick{-\R,0}{90} node[scale=0.9,left=3,below=-1] {\contour{white}{$-1$}}; \tick{0,-\R}{ 0} node[scale=0.9,left=-1] {\contour{white}{$-1$}}; \axis{ 0}{$0$} \line{ 30}{ 30}{175}{$\frac{ \pi}{6}$}{$\left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right)$} \line{ 45}{ 45}{188}{$\frac{ \pi}{4}$}{$\left( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$} \line{ 60}{ 60}{220}{$\frac{ \pi}{3}$}{$\left( \frac{1}{2}, \frac{\sqrt{3}}{2}\right)$} \axis{ 90}{$\frac{\pi}{2}$} \line{120}{-60}{-25}{$\frac{ 2\pi}{3}$}{$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\!\!$} %\vspace{-4mm} \line{135}{-45}{ -8}{$\frac{ 3\pi}{4}$}{$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$} \line{150}{-30}{ 5}{$\frac{ 5\pi}{6}$}{$\left(-\frac{\sqrt{3}}{2}, \frac{1}{2} \right)$} \axis{180}{$\pi$} \line{210}{ 30}{ -5}{$\frac{ 7\pi}{6}$}{$\left(-\frac{\sqrt{3}}{2},-\frac{1}{2} \right)$} \line{225}{ 45}{ 10}{$\frac{ 5\pi}{4}$}{$\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$} \line{240}{ 60}{ 30}{$\frac{ 4\pi}{3}$}{$\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$} \axis{270}{$\frac{3\pi}{2}$} \line{330}{-30}{180}{$\frac{11\pi}{6}$}{$\left( \frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$} \line{315}{-45}{170}{$\frac{ 7\pi}{4}$}{$\left( \frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$} \line{300}{-60}{150}{$\frac{ 5\pi}{3}$}{$\left( \frac{\sqrt{3}}{2},-\frac{1}{2} \right)$} \end{tikzpicture} \end{document}
Click to download: circle.tex • circle.pdf
Open in Overleaf: circle.tex