The pseudo force (or fictitious force) due to the acceleration of a non-inertial frame of reference S'.Force diagram of the mass in inertial 'lab' frame S:Force diagram in the non-inertial frame S' with the pseudo force F'.
Edit and compile if you like:
% Author: Izaak Neutelings (September 2020) \documentclass[border=3pt,tikz]{standalone} \usepackage{amsmath} \usepackage{tikz} \usepackage{physics} \usetikzlibrary{calc} \usetikzlibrary{angles,quotes} % for pic \usetikzlibrary{arrows.meta} % for arrow size \usetikzlibrary{bending} % for arrow head angle \usetikzlibrary{patterns} \tikzset{>=latex} % for LaTeX arrow head \usepackage{xcolor} \colorlet{xcol}{blue!70!black} \colorlet{vcol}{green!45!black} \colorlet{acol}{red!50!blue!80!black!80} \tikzstyle{vvec}=[->,very thick,vcol,line cap=round] \tikzstyle{avec}=[->,very thick,acol,line cap=round] \colorlet{myred}{red!65!black} \tikzstyle{force}=[->,myred,very thick,line cap=round] \tikzstyle{Fproj}=[force,myred!40] \tikzstyle{ground}=[preaction={fill,top color=black!10,bottom color=black!5,shading angle=20}, fill,pattern=north east lines,draw=none,minimum width=0.3,minimum height=0.6] \tikzstyle{mass}=[line width=0.5,red!30!black,fill=red!40!black!10,rounded corners=1, top color=red!40!black!20,bottom color=red!40!black!10,shading angle=20] \tikzstyle{rope}=[brown!70!black,line width=1,line cap=round] %very thick \tikzstyle{myarr}=[-{Latex[length=3,width=2]},thin] \def\rope#1{ \draw[rope,black,line width=1.4] #1; \draw[rope,line width=1.1] #1; } \def\car{ \draw[thick,rounded corners=2,orange!60!black, top color=orange!70!black!6,bottom color=orange!70!black!2,shading angle=10] (0,1.1*\CR) rectangle++ (\CW,\CH); \fill[black!20] (0.15*\CW,\CR) circle(\CR) (0.85*\CW,\CR) circle(\CR); \draw[black,fill=black!90,thin,even odd rule] (0.15*\CW,\CR) circle(\CR) circle(0.5*\CR) (0.85*\CW,\CR) circle(\CR) circle(0.5*\CR); } \begin{document} % MOVING REFERENCE FRAME \def\ang{-115} % rope angle \begin{tikzpicture} \def\r{0.10} % mass radius \def\H{2.0} % human height \def\CW{4.2} % car width \def\CH{2.6} % car height \def\CR{0.3} % wheel radius \def\W{1.30*\CW} % ground width \def\D{0.2} % ground depth \def\L{0.7*\CH} % rope length \coordinate (T) at (0.35*\CW,\CH+\CR+0.01); % SETUP \draw[ground] (-0.08*\W,0) rectangle++ (\W,-\D); \draw (-0.08*\W,0) --++ (\W,0); % CAR 1 \car \draw[thick,fill=white] (0.72*\CW,\H+\CR+0.03) circle (0.15*\H) coordinate (H); \draw[thick] (H)++(-90:0.15*\H) coordinate (N) to[out=-85,in=85]++ (0,-0.40*\H) coordinate (P); \draw[thick,line cap=round] (N)++(-85:0.03) to[out=-110,in=90]++ (-0.08*\H,-0.4*\H); \draw[thick,line cap=round] (N)++(-85:0.03) to[out=-60,in=-110]++ (0.15*\H,-0.12*\H) to[out=70,in=-70]++ (-0.01*\H,0.24*\H); \draw[thick] (P) to[out=-110,in=85] ($(H)+(-0.08*\H,-\H)$); \draw[thick] (P) to[out=-80,in=108] ($(H)+(0.06*\H,-\H)$); \draw[avec] (0.95*\CW,0.35*\CH) --++ (0.18*\CW,0) node[above] {$\vb{a}$}; % MASS \draw[dashed] (T) --++ (0,-0.65*\L) coordinate (B); \rope {(T) --++ (\ang:\L) coordinate (M)}; \draw pic[{Latex[length=3,width=2,flex'=1]}-,"$\theta$",draw,angle radius=20,angle eccentricity=1.3] {angle=M--T--B}; \draw[mass] (M) circle(\r) node[below=2] {$m$}; % AXIS \node (A) at (0.33*\CW,0.25*\CH) {S$'$}; \draw[<->,line width=0.9] (A)++(0.08*\CW,0.25*\CH) node[left,scale=0.9] {$y'$} |-++ (0.3*\H,-0.30*\H) node[below right=-3.5,scale=0.9] {$x'$}; \end{tikzpicture} % PENDULUM FORCES \begin{tikzpicture} \def\FG{1.3} % weight force (mg) magnitude \coordinate (O) at (0,0); \coordinate (FT) at (180+\ang:{\FG/cos(90+\ang)}); \coordinate (FTx) at ({\FG*tan(90-\ang)},0); \coordinate (FTy) at (0,\FG); \coordinate (FG) at (-90:\FG); \coordinate (FGx) at (-90+\ang:{0.7*\FG}); \coordinate (MA) at ({\FG*tan(\ang-90)},0); \draw[dashed,myred!60!black] (FTx) -- (FT) -- (FTy); \draw[Fproj] (O) -- (FTy) node[left=-2] {$\vb{T}_y$}; \draw[Fproj] (O) -- (FTx) node[right=-2] {$\vb{T}_x$}; \draw[force] (O) -- (FT) node[above right=-2] {$\vb{T}$}; \draw[force] (O) -- (FG) node[right=0] {$m\vb{g}$}; \draw[avec] (O) -- (MA) node[left=-1] {$m\vb{a}$}; \draw pic[myarr,"$\theta$",xcol,draw=xcol,angle radius=20,angle eccentricity=1.3] {angle=O--FT--FTx}; \node at ({1.3*\FG*tan(\ang-90)},-0.9*\FG) {S}; \end{tikzpicture} % PENDULUM FORCES \begin{tikzpicture} \def\FG{1.3} % weight force (mg) magnitude \coordinate (O) at (0,0); \coordinate (FT) at (180+\ang:{\FG/cos(90+\ang)}); \coordinate (FTx) at ({\FG*tan(90-\ang)},0); \coordinate (FTy) at (0,\FG); \coordinate (FG) at (-90:\FG); \coordinate (FGx) at (-90+\ang:{0.7*\FG}); \coordinate (MA) at ({\FG*tan(\ang-90)},0); \draw[dashed,myred!60!black] (FTx) -- (FT) -- (FTy); \draw[Fproj] (O) -- (FTy) node[left=-2] {$\vb{T}_y$}; \draw[Fproj] (O) -- (FTx) node[right=-2] {$\vb{T}_x$}; \draw[force] (O) -- (FT) node[above right=-2] {$\vb{T}$}; \draw[force] (O) -- (FG) node[right=0] {$m\vb{g}$}; \draw[force] (O) -- (MA) node[left=-1] {$F'$}; \draw pic[myarr,"$\theta$",xcol,draw=xcol,angle radius=20,angle eccentricity=1.3] {angle=O--FT--FTx}; \node at ({1.3*\FG*tan(\ang-90)},-0.9*\FG) {S$'$}; \end{tikzpicture} \end{document}
Click to download: reference_frame_noninertial.tex • reference_frame_noninertial.pdf
Open in Overleaf: reference_frame_noninertial.tex