Complete destructive interference:Partial destructive interference:Complete constructive interference:Interference pattern of two point sources in space:Path difference of the waves from two point sources:
Open in Overleaf: optics_interference.tex
% Author: Izaak Neutelings (June 2020) % Inspiration: https://tex.stackexchange.com/questions/285578/how-to-draw-parallelepiped-and-cube-with-latex/288101#288101 \documentclass[border=3pt,tikz]{standalone} \usepackage[outline]{contour} % glow around text \usepackage{xcolor} \usepackage{etoolbox} %ifthen \usetikzlibrary{arrows,arrows.meta} \usetikzlibrary{calc} \usetikzlibrary{decorations.markings} \usetikzlibrary{angles,quotes} % for pic (angle labels) \tikzset{>=latex} % for LaTeX arrow head \contourlength{1.6pt} \colorlet{myblue}{blue!70!black} \colorlet{myred}{red!65!black} \colorlet{mypurple}{red!50!blue!95!black!75} \colorlet{mylightgreen}{green!60!black!70} \colorlet{mygreen}{green!60!black} \colorlet{myredgrey}{red!50!black!80} \tikzstyle{wave}=[myblue,thick] \tikzstyle{mydashed}=[black!70,dashed,thin] \tikzstyle{mymeas}=[{Latex[length=3,width=2]}-{Latex[length=3,width=2]},thin] \begin{document} % DESTRUCTIVE INTERFERENCE \def\A{0.5} \def\k{360} \def\xmin{-0.3} \def\xmax{4.4} \def\h{2.3} \def\lang{90} \def\rang{270} % 720+270 = 990 \def\nsamples{200} \begin{tikzpicture} %\def\angg{asin(\na/\ng*sin(\anga))} %\coordinate (O) at (0,0); % WAVE 1 \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,variable=\x,samples=\nsamples,smooth,domain=\xmin:\xmax] plot(\x,{\A*sin(\k*\x)}); \node at (\xmax/2,-\h/2) {$+$}; % WAVE 2 \begin{scope}[shift={(0,-\h)}] \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,myred,variable=\x,samples=\nsamples,smooth,variable=\x,domain=\xmin:\xmax] plot(\x,{\A*sin(\k*\x+180)}); \end{scope} \node at (\xmax/2,-1.5*\h) {$=$}; % WAVE 3 \begin{scope}[shift={(0,-2*\h)}] \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,mypurple] (\xmin,0) -- (\xmax,0); \end{scope} % DASHED \draw[mydashed] (\lang/\k,1.25*\A) -- (\lang/\k,-2*\h-2.3*\A); \draw[mydashed] (\rang/\k,1.25*\A) -- (\rang/\k,-2*\h-2.3*\A); \draw[mymeas,myredgrey] (\lang/\k,-2.15*\A) --++ (180/\k,0) node[midway,below,scale=0.8] {\contour{white}{$\Delta \phi=\frac{\pi}{2}$}}; \end{tikzpicture} % PARTIAL INTERFERENCE \begin{tikzpicture} \def\dphi{138} % WAVE 1 \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,variable=\x,samples=\nsamples,smooth,domain=\xmin:\xmax] plot(\x,{\A*sin(\k*\x)}); \node at (\xmax/2,-\h/2) {$+$}; % WAVE 2 \begin{scope}[shift={(0,-\h)}] \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,myred,variable=\x,samples=\nsamples,smooth,domain=\xmin:\xmax] plot(\x,{\A*sin(\k*\x-\dphi)}); \end{scope} \node at (\xmax/2,-1.5*\h) {$=$}; % WAVE 3 \begin{scope}[shift={(0,-2*\h)}] \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,mypurple,variable=\x,samples=\nsamples,smooth,domain=\xmin:\xmax] plot(\x,{2*cos(\dphi/2)*\A*sin(\k*\x-\dphi/2)}); \end{scope} % DASHED \draw[mydashed] (\lang/\k,1.25*\A) -- (\lang/\k,-2*\h-2.3*\A); \draw[mydashed] (\rang/\k,1.25*\A) -- (\rang/\k,-2*\h-2.3*\A); \draw[mydashed,myredgrey] ({(\lang+\dphi)/\k},0.55*\A) -- ({(\lang+\dphi)/\k},-\h-1.3*\A); \draw[mymeas,myredgrey] (\lang/\k,-2.1*\A) --++ (\dphi/\k,0) node[midway,below,scale=0.8] {\contour{white}{$\Delta \phi$}}; \draw[mymeas] (0.3*\xmin+\dphi/\k/2,-2*\h) --++ (0,{2*cos(\dphi/2)*\A}) node[inner sep=-3,scale=0.8,below=4,left=4] %fill=white {$2A\cos\!\frac{\color{myredgrey}\Delta\phi}{2}$}; \end{tikzpicture} % CONSTRUCTIVE INTERFERENCE \begin{tikzpicture} % WAVE 1 \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,variable=\x,samples=\nsamples,smooth,domain=\xmin:\xmax] plot(\x,{\A*sin(\k*\x)}); \node at (\xmax/2,-\h/2) {$+$}; % WAVE 2 \begin{scope}[shift={(0,-\h)}] \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,myred,variable=\x,samples=\nsamples,smooth,domain=\xmin:\xmax] plot(\x,{\A*sin(\k*\x)}); \end{scope} \node at (\xmax/2,-1.4*\h) {$=$}; % WAVE 3 \begin{scope}[shift={(0,-2*\h)}] \draw[->,black] (\xmin,0) -- (1.06*\xmax,0); \draw[wave,mypurple,variable=\x,samples=\nsamples,smooth,domain=\xmin:\xmax] plot(\x,{2*\A*sin(\k*\x)}); \end{scope} % DASHED \draw[mydashed] (\lang/\k,1.25*\A) -- (\lang/\k,-2*\h-2.3*\A); \draw[mydashed] (\rang/\k,1.25*\A) -- (\rang/\k,-2*\h-2.3*\A); \draw[mymeas] (0.7*\xmin,-2*\h) --++ (0,2*\A) node[fill=white,midway,inner sep=1,scale=0.8] {$2A$}; \end{tikzpicture} % POINT SOURCES \begin{tikzpicture}[ nodal/.style={mylightgreen,dashed,very thin}, declare function={ %xnode(\n,\dn,\lam,\f) = sqrt( (\n^2+(\n+\dn)^2)*\lambd^2/2 - (\n^2-(\n+\dn)^2)^2*\lambd^4/(4*\a^2) - \a^2/4 ); xnode(\n,\dn,\lam,\f) = \lam/\f*sqrt( \n^2*(\f^2-\dn^2)+\n*\dn*(\f^2-\dn^2)+\dn^2*\f^2/2-(\f^4+\dn^4)/4 ); ynode(\n,\dn,\lam,\a) = (2*\n*\dn+\dn^2)*\lam/(2*\f); intensity(\y,\lam,\a,\L) = cos(180*\a*\y/(2*\lam*sqrt(\L*\L+\y*\y)))^2; } ] %\def\W{2.2} %\def\H{2.2} \def\N{10} \def\lambd{0.28} \def\R{\N*\lambd} \def\a{1.0} \def\Nlines{3} \def\r{0.06} %\def\nmax{10} \def\nsamples{150} % NODAL LINES \draw[nodal] (-1.06*\R,0) -- (1.06*\R,0) node[mygreen,right] {$\Delta m=0$}; % -1/2 + (1/0.44)/2 = 0.6363636364 % -2/2 + (1/0.44)/2 = 0.1363636364 % \c=int(\dn<int(\lambd)) %\begin{scope} %\clip (-1.1*\W,-1.1*\H) rectangle (1.1*\W,1.1*\H); %\clip (0,0) ellipse ({1.1*\R} and {(1.1*(\R-\a/2)}); %\clip (0,0) circle (1.1*\R); \foreach \dn [evaluate={ \f=\a/\lambd; \nmin=0.501*(-\dn+\f); \nmax=1.06*\N; \meven=int(\dn-1); \c=int(\dn<\f);} ] in {1,...,\Nlines}{ \ifnum\c=1 \draw[nodal,variable=\n,samples=\nsamples,smooth] plot[domain=\nmax:\nmin] ({-xnode(\n,\dn,\lambd,\f)},{ynode(\n,\dn,\lambd,\a)}) -- plot[domain=\nmin:\nmax] ({xnode(\n,\dn,\lambd,\f)},{ynode(\n,\dn,\lambd,\a)}) coordinate (+DN); %node[mygreen,right] {$\Delta m=\dn$}; \draw[nodal,variable=\n,samples=\nsamples,smooth] plot[domain=\nmax:\nmin] ({-xnode(\n,\dn,\lambd,\f)},{-ynode(\n,\dn,\lambd,\a)}) -- plot[domain=\nmin:\nmax] ({xnode(\n,\dn,\lambd,\f)},{-ynode(\n,\dn,\lambd,\a)}) coordinate (-DN); %node[mygreen,right] {$\Delta m=-\dn$}; \ifodd\dn \node[mygreen,right] at (-DN) {$\Delta m=-\frac{\dn}{2}$}; \node[mygreen,right] at (+DN) {$\Delta m=+\frac{\dn}{2}$}; \else \node[mygreen,right] at (-DN) {$\Delta m=-\meven$}; \node[mygreen,right] at (+DN) {$\Delta m=+\meven$}; \fi \fi } %\end{scope} % WAVES %\begin{scope} %\clip (-\W,-\H) rectangle (\W,\H); \foreach \i [evaluate={\R=\i*\lambd;}] in {1,...,\N}{ \ifodd\i \draw[myblue!80,line width=0.1] (0,\a/2) circle (\R); \draw[myred!80,line width=0.1] (0,-\a/2) circle (\R); \else \draw[myblue,line width=0.8] (0,\a/2) circle (\R); \draw[myred,line width=0.8] (0,-\a/2) circle (\R); \fi } %\end{scope} % POINTS \fill[myblue] (0,\a/2) circle (\r); %node[left] {\contour{white}{S$_1$}}; \fill[myred] (0,-\a/2) circle (\r); %node[left] {\contour{white}{S$_2$}}; \end{tikzpicture} % PATH DIFFERENCE \begin{tikzpicture} \def\a{1} \def\px{2.5} \def\py{1.5} \def\A{0.1} \def\k{1300} \def\r{0.06} \coordinate (S1) at (0,\a/2); \coordinate (S2) at (0,-\a/2); \coordinate (P) at (\px,\py); % WAVES \draw[myblue,thick,samples=100,smooth,variable=\x,domain=0:1*\px] plot(\x,{\a/2+(\py-\a/2)/\px*\x + \A*sin(\k*\x)}); \fill (\px,\py) circle (\r); \draw[myred,thick,samples=100,smooth,variable=\x,domain=0:1*\px] plot(\x,{-\a/2+(\py+\a/2)/\px*\x + \A*sin(\k*\x)}); \path (P) -- (S1) node[midway,above left,myblue] {$r_1$}; \path (P) -- (S2) node[midway,below right,myred] {$r_2$}; % POINTS \fill[myblue] (0,\a/2) circle (\r) node[left] {S$_1$}; \fill[myred] (0,-\a/2) circle (\r) node[left] {S$_2$}; \fill (\px,\py) circle (\r); \end{tikzpicture} \end{document}Click to download: optics_interference.tex • optics_interference.pdf
Open in Overleaf: optics_interference.tex
The code above seems to be incomplete. Thanks a lot for the great illustrations.
Hey Martin, Thanks for the heads up! It appears a ‘<' in the LaTeX code screwed up the HTML. It should be fixed now, but you can find the full file here: https://tikz.net/files/optics_interference.tex or open it in Overleaf via https://www.overleaf.com/docs?snip_uri=https://tikz.net/files/optics_interference.tex.
Cheers, Izaak
Thanks!